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Objective Eulerian Coherent Structures (OECSs) and instantaneous Lyapunov exponents (iLEs)
govern short-term material transport in fluid flows as Lagrangian Coherent Structures and the
Finite-Time Lyapunov Exponent do over longer times. Attracting OECSs and iLEs reveal short-
time attractors and are computable from the Eulerian rate-of-strain tensor. Here, we devise for
the first time an optimal control strategy to create short-time attractors in compressible, viscosity-
dominated active nematic flows. By modulating the active stress intensity, our framework achieves
a target profile of the minimum eigenvalue of the rate-of-strain tensor, controlling the location and
shape of short-time attractors. We use numerical simulations to show that our optimal control
strategy effectively achieves desired short-time attractors while rejecting disturbances. Combining
optimal control and coherent structures, our work offers a new perspective to steer material transport
in compressible active nematics, with applications to morphogenesis and synthetic active matter.

Large-scale coherent dynamics where global collec-
tive behaviors arise from local interactions, individual
anisotropies and activity are ubiquitous. Bird flocks,
bacterial swarms or ensembles of cells exhibit macro-
scopic patterns whose length scale is orders of magni-
tude larger than the individual size [1–6]. The macro-
scopic dynamics of these systems of active individuals –or
active matter– exhibit nonstandard physical properties
such as self-organization, symmetry breaking and non-
reciprocity [2, 7–10]. There are several descriptions of
active matter [11], including agent-based models, coarse-
grained continuum models, and data-driven models [12].
Besides studying the emergent properties of active mat-
ter, it is natural to ask how to control such systems.

The main possibilities rely on distributed or bound-
ary control techniques [13]. Experimentally, Ross et al.
[14] generated desired persistent fluid flows by regulat-
ing light patterns on a mixture of optogenetically modi-
fied motor proteins and microtubule filaments. Also con-
trolling light, Lemma et al. [15] achieved spatiotempo-
ral patterning of extensile active stresses in microtubule-
based active fluids. By controlling an external electric
field affecting cellular signaling networks, Cohen et al.
[16] steered the collective motion of MDCK-II epithe-
lial cells. From a theoretical perspective, Shankar et al.
[17] propose a new framework to steer topological de-
fects –the localized singularities in the orientation of the
active building blocks [2]– by controlling activity stress
patterns. Norton et al. [18] devised an Optimal Con-
trol Problem (OCP) to achieve a target nematic director
field by controlling either an applied vorticity field or the
active stress magnitude in incompressible active nemat-
ics. Alternative control strategies use surface anchoring
at the boundaries and substrate drag to rectify the co-
herent flow of an active polar fluid in a 2D channel [19].
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Existing theoretical methods target a desired configu-
ration of the nematic director field, topological defects or
fluid velocities. While defects’ dynamics drive large-scale
chaotic flow [21–23], they may not be enough to predict
spatiotemporal material transport. For instance, Serra
et al. [24] show in experimental and numerical active
nematics that the director field alone cannot predict if
different domain regions will mix over a desired time in-
terval or remain separated by a transport barrier, as well
as predict where transport barriers are. In fact, even
the knowledge of the velocity field and typical streamline
or vorticity plots are sub-optimal to studying material
transport in unsteady flows, as shown in experimental
and simulated velocities [25–27] and Figure 1.
A natural framework to quantify material transport

is the concept of Coherent Structures (CSs), see e.g.
[25, 26, 28], which serve as the robust frame-invariant
skeletons shaping complex trajectory patterns. CSs such
as attractors, their domain of attraction and repellers
are widespread in embryonic development across species
[29–31] and active nematics [24]. Here, we devise for the
first time an optimal control strategy to create short-
time attractors in compressible, viscosity-dominated ac-
tive nematic flows [30, 32]. While most theory literature
on active matter control assumes incompressible flows,
in gastrulation and morphogenesis, flows are highly com-
pressible, accounting for the internalization of cells to
start organogenesis.

I. MATERIAL TRANSPORT

Long-term material transport is a Lagrangian phe-
nomenon, originally studied by tracking the redistribu-
tion of individual trajectories. In that setting, the Finite
Time Lyapunov Exponent (FTLE) and Lagrangian co-
herent structures (LCSs) successfully predicted material
transport [24, 25, 28, 29, 33, 34]. An alternative to La-
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FIG. 1. Short-time attractors in an experimental multicellular flow. (a) Fluorescence image of the chicken embryo’s epiblast,
containing ≈ 60, 000 cells during gastrulation. AP denotes the Anterior-Posterior axis. Velocities are reconstructed from
Light Sheet Microscopy [20]. The scale bar is 500µm, and t = 0 corresponds to the beginning of gastrulation. (b) Velocity
field v(x, 520) (black vectors). (c) Instantaneous Lyapunov Exponent field s1(x, 520) (colormap), consisting of the smallest
eigenvalue of the rate-of-strain tensor of v. Negative values of s1(x, 520) mark short-time attractors. To visualize the effect of

short-term attractors, green dots in panel c mark the current t = 520 position F520
475(x0) = x0 +

∫ 520

475
v(Fτ

475, τ)dτ of short-time
trajectories of v(x, t), starting at t = 475 from a uniform spatial configuration. Within this short time (45 min/12h ≈ 6% of
gastrulation time), trajectories accumulate on the s1(x, 520) trench. The inset shows both v(x, 520) and s1(x, 520), highlighting
how attractors remain hidden to v but are correctly captured by s1. See Fig. S2 for the same analysis at a different time.

grangian approaches is to find their instantaneous limits
purely from Eulerian observations, avoiding the pitfalls
of trajectory integration. Additionally, LCSs are imprac-
tical to control–no literature exists–because they are de-
fined as nonlinear functions of fluid trajectories, which
are integrals of the Eulerian velocity v.

Short-time attractors – originally defined as Attracting
OECSs [26] – govern material transport in fluid flows over
short-times, revealing critical information in challenging
problems such as search and rescue operations at sea [27]
and oil-spill containment [35]. A simpler, more control-
lable alternative to attracting OECSs for locating short-
time attractors is the instantaneous Lyapunov Exponent
(iLE)[36], defined as the instantaneous limit of the well-
known FTLE. The iLE locates short-time attractors as
trenches – or negative regions – of the smallest eigenvalue
s1 of the rate-of-strain tensor of the fluid velocity. For
example, Fig.1 shows short-term attractors marked by
trenches of s1 (scalar field) in an experimental velocity
field (black vectors) describing the motion of thousands of
cells during chick gastrulation [20]. A strong trench of s1
marks a short-term attractor along the anterior-posterior
(AP) axis corresponding to the forming primitive streak
[29] (panel c), while remaining not identifiable from the
inspection of the corresponding velocity field (panel b
and inset). Similar results hold in different flows (e.g.,
Fig. 1 of [26] and Figs. 4-5 of [27]).

This example shows that inspection and control of the
velocity field v is sub-optimal to create material traps in
general unsteady flows. First, because the velocity field
and its streamlines are not objective, i.e., they depend
on the choice of reference frame used to describe motion
(see also SM Section 6 and Figs. S1-S2). By contrast,
the location of material accumulation is frame invariant
[25, 26]. Second, it might be an unnecessarily strong
requirement, or uncompliant with boundary conditions,
to prescribe v(x, t) directly.

II. ACTIVE FLUID MODEL

We adopt a simplified version of the mechanochemical
model developed in [30] consisting of an active stokes flow
characterized by the viscous stress σv = −pI+2µSd and
active stress σa = m(B−I/2), where Sd is the deviatoric
rate-of-strain tensor, B = e⊗e characterizes the orienta-
tion of active elements e = (cos(ϕ) sin(ϕ))⊤, m denotes
the intensity of active stress and I the identity tensor.
To account for flow compressibility, we use a simple con-
tinuity equation ∇ · v = c(−2p − p0m) where positive
isotropic viscous stress (p > 0), and isotropic contractile-
type (m > 0) active stress contribute to negative flow
divergence via the bulk viscosity 1/c and a nondimen-
sional parameter p0. Biologically, p0 modulates the cell
propensity to ingress into the third dimension given ac-
tive isotropic apical contraction. The resulting system of
PDEs in nondimensional form [30] is

2p1∆v +∇[∇ · v] + g(m,ϕ) = 0,
g = p1[2(B∇m+m∇ ·B) + (p0 − 1)∇m] = ∇ · (Am),

ϕt = −(v · ∇)ϕ+ ω
2 +

(
uy+vx

2 cos 2ϕ+
vy−ux

2 sin 2ϕ
)
,

mt = −(v · ∇)m+ p2(1−me−
p3
2 m) + p4∆m,

(1)
where p1 = µc is a second nondimensional parameter
characterizing the ratio of the shear to bulk viscosity,
g(m,ϕ) is the active force, and A = 2p1B+ p1(p0 − 1)I.
The last two equations–not used here–model the dynam-
ics of the active stress intensity and orientation coupled
to the tissue velocity [30, 32]. In biological flows domi-
nated by active stresses, one expects the nondimensional
|m| characterizing the ratio of active to viscous stresses
to achieve values of order 10 as in [30].
Abstracting morphogenesis as a control problem, one

can ask how embryos control their active stress to bring
the right cells to specific spatiotemporal coordinates.
This is precisely the case shown in Fig. 1, where
mesendoderm precursor cells converge to the attractors,
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FIG. 2. Optimal solution of the OCP generating short-time attractors. The target minimum eigenvalue z(x) is the indicator
function of a rectangle at the center of the domain. The optimal eigenvalue field s⋆1(x) is shown by the colormap. a-b correspond
to different initialization times ti and show the effect of short-time attractors by initializing a uniform set of fluid tracers (yellow
dots) at each ti and displaying their later positions integrating v(x, t) over short times, as in Figs. 1c.

marking the primitive streak [30]. As a first step, we
consider a simplified dynamic where the orientation of
active elements ϕ(x) is prescribed and time-independent,
and use the active stress intensity m(x, t) as the con-
trol input. A time-independent ϕ is a simplification
that could be experimentally enforced by steady mor-
phogen concentration inducing planar cell polarity or by
imposing directional tension at the boundary [37]. How
one might controlm experimentally is system-dependent.
In microtubule-based active fluids, m can be controlled
with light patterns [15]. By contrast, in the context of
gastrulation–the most pertinent for our approach, given
the viscous, compressible active nematic model (Eq. 1)–
we were able to indirectly control m in-vivo in chick em-
bryos by adding FGF2 (fibroblast growth factor 2) (see
e.g., Fig. 4 of [30] and [32], and SM S8). In Drosophila, m
can be modulated by optogenetic activation or inhibition
of Rho signaling [38–41].

III. RESULTS

To control short-time attractors, the OCP involves
steering the minimum eigenvalue of the rate of strain
tensor towards a target function while minimizing the
overall control effort and its gradient:

min
m,v

Js =
1

2

∫
Ω

(s1 − z)2 dΩ+
β

2

∫
Ω

(
m2 + ∥∇m∥2

)
dΩ,

s.t.
−2p1∆v −∇[∇ · v] = g(m) + d in Ω

v = 0 on ∂Ω,
(2)

where z(x) represents a scalar target for the minimum
eigenvalue s1(x) of the rate-of-strain tensor S, d(x, t)
is an imposed known force (or disturbance), and Ω, ∂Ω
denote the domain and its boundary, where we impose
v = 0. In morphogenesis, d could arise from external
forces imposed on, rather than controlled by, the embryo.
The optimal pair (v, m) for the OCP (2) should satisfy

the following system of first-order necessary conditions

−2p1∆v −∇[∇ · v] = g(m) + d in Ω
v = 0 on ∂Ω

−2p1∆λ−∇[∇ · λ] = −∇ ·
(
(s1 − z) ξ1 ⊗ ξ1

)
in Ω

λ = 0 on ∂Ω
−β∆m+ βm−∇λ : A = 0 in Ω,

(3)
where ξ1 is the eigenvector field associated with s1 (SM
Sections 2-4 for details). Practically, at any t, given an
imposed force distribution d(x, t), boundary conditions
and desired short-time attractor z(x), (3) generates the
optimal m(x, t) to achieve z. See SM Sec. 8 for an al-
gorithmic summary of (3) and a concrete application to
avian-embryos morphogenesis. Eq. (3) requires an iter-
ative method due to the complex nonlinear relationship
between v and the forcing term of the adjoint equation
involving s1 and ξ1. We solve (3) using a Finite Element
Method (FEM) and a gradient-based algorithm (SM Sec.
5) on a circular domain, and note that our algorithm ap-
plies to arbitrary domains.
We set the target shape z as a scaled indicator func-

tion of a rectangle so that the target value is −10 inside
the rectangle and zero elsewhere. We set the cable ori-
entation to a constant value ϕ = π

4 from the x-axis and

choose the control weighting parameter β = 10−6 and the
nondimensional model parameters p0 = 10, p1 = 0.5. p1
modulates the overall fluid compressibility while high p0
induces high negative divergence in regions with higherm
[30]. We select the space-time varying disturbance force

as d(x, t) = d e−(
r(t)
σ )2 [−(y − yc(t)), x − xc(t)], where

xc(t) = [−0.5 + t, 0.5], r(t) = ||x − xc(t)||, and set the
intensity d = 50, and standard deviation σ = 0.2. Figure
2 shows the resulting optimal s1 along with a grid of par-
ticles advected over short times for two different initial-
ization times. Figure 3 shows the optimal state-control
pair and its associated disturbance d. The control m
acts through g(m) = ∇ · (Am), and therefore both m
and ∇m contribute to the state dynamics. Overall the
disturbance strongly influences the optimal velocity.
Figure 4 shows the interplay between the control
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FIG. 3. Optimal control state pair (m⋆,v⋆) and moving imposed (or disturbance) d associated to the OCP described in Fig.
2. d and v⋆ are vector fields (arrows) with their magnitude also displayed in the colormap. The v⋆ vectors are normalized
to ease visualization. Each row (a-b) corresponds to different initialization times ti as Fig. 2. The velocity dynamics v are
strongly affected by the presence of the disturbance.

FIG. 4. Controlled and uncontrolled dynamics for two spatiotemporal disturbances d(x, ti) (first column). Columns 2-4 show
s1(x) for no control, weak (β = 0.1) and strong (β = 10−6) control along with fluid tracers advected for a short time starting
from a uniform initial grid at ti. Here, d(x, t) = d(xc1(t))−d(xc2(t)), where xc1(t) = 0.5[cos(0.5πt+π), cos(0.5πt+π)], xc2(t) =
0.5[cos(0.5πt), cos(0.5πt)], and d(xci(t)) = [−(y − yci(t)), (x− xci(t))]500 exp(−((x− xci(t))

2 + (y − yci(t)
2))/0.22.

weight β, the disturbance d and the accuracy of the
tracking objective. To present an additional test case, we
select a different disturbance compared to Figs. 2-3, gen-
erating two vortex-shaped force-field streamlines (Figure
4, first column) using the same functional form in the
previous test case. The target eigenvalue z is the same
as in Figs. 2-3. The uncontrolled dynamics (m = 0) does
not generate attraction (Figure 4, second column), while
weak and strong control (third-fourth columns) steer s1
towards the target, generating a material trap while re-
jecting d. In SM S7, we provide an extensive sensitivity
analysis and show that our control scheme can gener-
ate any attractor geometry and is robust to changes in
control and model parameters, the orientation of active

elements ϕ, and the disturbance d. In SM S8, we illus-
trate our approach in the context of avian gastrulation
control, where d represents a traction force imposed on
the embryo by extraembryonic cells, and the embryo de-
velops a ring-shaped, short-time attractor by modulating
its active myosin distribution m, consistent with in-vivo
experiments in the chick embryo [30, 32].

IV. CONCLUSION

We have proposed an optimal control problem that
generates, for the first time, material short-time attrac-
tors at desired locations in compressible, highly viscous
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active nematics using the active stress intensity as the
control input. Short-time attractors predict the correct
location of material attraction, which may be undetected
from the inspection of frame-dependent velocity fields
(Fig. 1, [26, 27]). Additionally, several configurations
of the frame-dependent v can generate the same frame-
invariant attractor configurations (see e.g. Figs. S3-5).
Similarly, one can control material repellers, which, to-
gether with attractors, shape complex motion in syn-
thetic active matter [24] and living embryos [29, 31].
Our results demonstrate how to achieve these aims in
principal. As experimental techniques to manipulate m
increase in their precision and availability in more sys-
tems, this theoretical technique may enable the creation
of material traps for medical applications as well as en-
hance our ability to control morphogenetic flows. For

example, it will shed light on how myosin activity (ac-
tive stress intensity) generates the required motion that
compartmentalizes the embryo, segregating distinct cell
types (repellers) and steering specific cells to precise lo-
cations (attractors). In future work, we plan to consider
the explicit orientational dynamics of the active stress
anisotropy, the effect of inertial forces, and the control of
Lagrangian Coherent Structures that shape fluid motion
over longer times.
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S1. NOTATION

We adopt a slightly different notation than the main
text to distinguish continuous functions and their associ-
ated numerical discretization. Continuous space-varying
functions are denoted with lowercase bold arrowed sym-
bols (i.e. v⃗ ∈ H1

0 (Ω)
2) while their numerical discretiza-

tion as the standard bold vector v ∈ RN where N is the
number of degrees of freedom of the Finite Element dis-
cretization. Furthermore, matrices arising from the nu-
merical discretization are denoted with uppercase letters
i.e. A ∈ RN×N .

S2. ANALYSIS OF THE STATE DYNAMICS

In order to set up the problem in the proper setting
we need some basic notions from functional analysis, see
e.g. [1]. We denote L2(Ω)2 the space of vector-valued

square integrable functions, that is {⃗f |
∫
Ω

∥∥∥⃗f∥∥∥2 dΩ < ∞}
then, H1

0 (Ω)
2 denotes the space of vector-valued square

integrable functions with zero trace and square integrable

gradient , that is {⃗f ∈ L2(Ω)2 |
∫
Ω

∥∥∥∇f⃗
∥∥∥2
F
<∞ and f⃗∂Ω =

0⃗} while H−1(Ω)2 denotes its dual, that is the space
of continuous linear functionals defined on H1

0 (Ω)
2. We

can now select the appropriate spaces for our problem.
The state dynamics v⃗ ∈ H1

0 (Ω)
2 while the control input

m ∈ H1(Ω). In this setting, the control operator can be
defined as the linear operator g : H1(Ω) 7→ H−1(Ω)2.
The function g⃗(m) ∈ L2(Ω)2 since m ∈ H1(Ω), as we
will prove in the following theorem on the well-posedness
of the state dynamics. The weak formulation of the state
dynamics reads: find v⃗ ∈ H1

0 (Ω)
2 such that∫

Ω

(
− 2p1∆v⃗ −∇[∇ · v⃗]

)
· ϕ⃗ dΩ =

∫
Ω

g⃗(m) · ϕ⃗ dΩ

∀ϕ⃗ ∈ H1
0 (Ω)

2, which can be rearranged in a more conve-
nient form using integration by parts and homogeneous
boundary conditions as

∫
Ω

2p1∇v⃗ : ∇ϕ⃗+ (∇ · v⃗)(∇ · ϕ⃗) dΩ =

∫
Ω

−mA : ∇ϕ⃗ dΩ

∀ϕ⃗ ∈ H1
0 (Ω)

2 , where the operator : denotes the Frobe-
nius innner product of two matrices, that is A : B =
n∑
i

n∑
j

AijBij . Note that the Frobenius inner product

induces a norm in the space of matrices that we denote
as ∥A∥F :=

√
A : A, for more details, see e.g. [2]. Exis-

tence and uniqueness of solutions to this problem follow
from an application of the Lax-Milgram lemma of func-
tional analysis, see e.g. [1]. In particular, we can set the
state problem in abstract form by defining the symmetric
bilinear form a(v⃗, ϕ⃗) :=

∫
Ω
2p1∇v⃗ : ∇ϕ⃗+(∇·v⃗)(∇·ϕ⃗) dΩ

and the linear functional Fmϕ⃗ :=
∫
Ω
g⃗(m) · ϕ⃗dΩ. In this

setting, we can prove the following result.

Proposition 1 There exists a unique weak solution v⃗ to

a(v⃗, ϕ⃗) = Fmϕ⃗ ∀ϕ⃗ ∈ H1
0 (Ω)

2.
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Furthermore, v⃗ depends continuously on the control func-
tion m that is

∥v⃗∥H1
0 (Ω)2 ≤

√
αCp

2p1
∥m∥H1(Ω)2

where Cp is the Poincaré constant depending only on Ω

and α = max{∥∇ ·A∥2L∞(Ω) , ∥A∥2L∞(Ω)} does not de-

pend on v⃗ and m.

Proof The control operator g⃗ that appears on the right-
hand side of the state equation can be bounded with
respect to the H1-norm of the control function m as

∥g⃗∥2L2(Ω)2 ≤ ∥(∇ ·A)m∥2L2(Ω)2 + ∥A∇m∥2L2(Ω)2

≤ ∥∇ ·A∥2L∞(Ω) ∥m∥2L2(Ω) + ∥A∥2L∞(Ω) ∥∇m∥2L2(Ω)

≤ α ∥m∥2H1(Ω)2

where α = max{∥∇ ·A∥2L∞(Ω) ,M}. Note that we have
used the triangle inequality and the operator bound on
the matrix A which is assumed to be sufficiently smooth.
Once this bound is established, we can prove existence
and uniqueness of a weak solution to the state equation
by showing that the hypotheses of Lax-Milgram lemma
are satisfied, that is the bilinear form is continuous and
coercive and the linear functional Fm is continuous with
respect to the H1

0 (Ω)
2-norm. Coerciveness can by proven

as follows

a(v⃗, v⃗) =

∫
Ω

2p1∇v⃗ : ∇v⃗ + (∇ · v⃗)(∇ · v⃗) dΩ

≥
∫
Ω

2p1∇v⃗ : ∇v⃗dΩ = 2p1 ∥v⃗∥2H1
0 (Ω)2

since, thanks to Poincaré inequality,
√∫

Ω
∇v⃗ : ∇v⃗ dΩ is

a norm in H1
0 (Ω)

2. Continuity of the linear functional
can be inferred by

|Fmψ⃗| ≤ ∥g⃗(m)∥L2(Ω)2

∥∥∥ψ⃗∥∥∥
L2(Ω)2

≤
√
αCp ∥m∥H1(Ω)2

∥∥∥ψ⃗∥∥∥
H1

0 (Ω)2

using the bounds of the control operator g⃗ with re-
spect to the norm of m and the Poincarè inequality, i.e.∥∥∥ψ⃗∥∥∥

L2(Ω)2
≤ Cp

∥∥∥∇ψ⃗∥∥∥
L2(Ω)2

= Cp

∥∥∥ψ⃗∥∥∥
H1

0 (Ω)2
. Continu-

ity of the state dynamics v⃗ with respect to the control m
is proven by plugging in v⃗ as test function in the weak
formulation of the problem and using the coercivity of
the bilinear form. Indeed we have

2p1 ∥v⃗∥2H1
0 (Ω)2 ≤ a(v⃗, v⃗) = Fmv⃗ ≤

√
αCp ∥m∥H1(Ω)2 ∥v⃗∥H1

0 (Ω)2

from which we get

∥v⃗∥H1
0 (Ω)2 ≤

√
αCp

2p1
∥m∥H1(Ω)2 .

□

S3. ANALYSIS OF THE OPTIMAL CONTROL
PROBLEM

We have already established existence and uniqueness
of a solution to the state equation. It is left to prove
that the functional J is weakly sequentially lower semi-
continous. The term of the cost functional involving the
control m is trivially weakly lower semicontinuous since
it is the H1(Ω)-norm of the control function squared. We
will now prove that the first term involving the eigenvalue
s1 is continuous in v⃗ and thus weakly sequentially lower
semicontinuous.

Before deriving a system of first-order necessary condi-
tions for optimality we prove well-posedness by showing
that s1 ∈ L2(Ω), indeed

∥s1∥2L2(Ω) =

∫
Ω

s21dΩ ≤
∫
Ω

(s21 + s22)dΩ

≤
∫
Ω

∥S(v⃗)∥2F dΩ (S1)

≤
∫
Ω

∥∇v⃗∥2F dΩ = ∥v⃗∥2H1
0 (Ω)2 (S2)

so that we have ∥s1∥2L2(Ω) ≤ ∥v⃗∥2H1
0 (Ω)2 , where we used

the inequality
∑n

i=1 s
2
i ≤ ∥A∥2F involving the eigenvalues

of a matrix A. The second inequality comes from the
following reasoning, it holds that:

2S(v⃗) : S(v⃗)−∇v⃗ : ∇v⃗ = ∇· (∇v⃗ v⃗− (∇· v⃗)v⃗)+(∇· v⃗)2

Integrating over Ω and using the boundary conditions we
get

∫
Ω

∥S(v⃗)∥2F dΩ =
1

2

(∫
Ω

∥∇v⃗∥2F dΩ+

∫
Ω

(∇ · v⃗)2dΩ
)

≤
∫
Ω

∥∇v⃗∥2F dΩ (S3)

since (∇ · v⃗)2 = (Tr(∇v⃗))2 ≤ ∥∇v⃗∥2F .

We denote Js[v⃗] :=
∫
Ω
(s1 − z)2dΩ and show that

|Js[v⃗n] − Js[v⃗]| → 0 as v⃗n → v⃗. We also denote
s1,n := s1(v⃗n) and s1 := s1(v⃗) to ease the notation. Note
also that Js[v⃗] =

∫
Ω
(s1 − z)2dΩ = (s1 − z, s1 − z)L2(Ω) =

∥s1 − z∥2L2(Ω) can be seen either as a scalar product in

L2(Ω) or as a tracking type cost functional involving the
norm of s1 − z, which is well-posed since s1 ∈ L2(Ω).
Since we have Js[v⃗n]− Js[v⃗] = (s1,n − z, s1,n − z)L2(Ω) −
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(s1 − z, s1 − z)L2(Ω) , we can write

(s1,n − z, s1,n − z)L2(Ω) − (s1 − z, s1 − z)L2(Ω)

= (s1,n, s1,n)L2(Ω) − (s1, s1)L2(Ω)

−2(s1,n − s1, z)L2(Ω) ± (s1,n, s1)L2(Ω)

= (s1,n, s1,n − s1)L2(Ω) + (s1, s1,n − s1)− 2(s1,n − s1, z)

≤ ∥s1,n∥L2(Ω) ∥s1,n − s1∥L2(Ω) (S4)

+ ∥s1∥L2(Ω) ∥s1,n − s1∥L2(Ω) + 2 ∥z∥L2(Ω) ∥s1,n − s1∥L2(Ω)

=
(
∥s1,n∥L2(Ω) + ∥s1∥L2(Ω) + 2 ∥z∥L2(Ω)

)
∥s1,n − s1∥L2(Ω)

= C ∥s1,n − s1∥L2(Ω)

so that finally we have Js[v⃗n] − Js[v⃗] ≤
C ∥s1,n − s1∥L2(Ω), where we have used the proper-

ties of the inner product and the Cauchy-Schwarz
inequality in L2(Ω). Note that the constant

C :=
(
∥s1,n∥ + ∥s1∥ + 2 ∥z∥

)
is well-defined and

finite since s1,n, s1, z ∈ L2(Ω). Now, if we can prove that
∥s1,n − s1∥L2(Ω) ≤ L ∥v⃗n − v⃗∥H1

0 (Ω)2 for some constant

L > 0,the result follows. In proving that this indeed
holds we need a theorem from eigenvalues perturbation
analysis from [2], Chapter 6, Corollary 6.3.8 that we
state here. If A and E are symmetric matrices, denoting
ŝ the eigenvalues of A + E and by s the eigenvalues of
A it holds that

∑n
i=1 |ŝi − si|2 ≤ ∥E∥2F . We can write

∥s1,n − s1∥2L2(Ω) =

∫
Ω

(s1,n − s1)
2dΩ (S5)

≤
∫
Ω

∥S(v⃗n)− S(v⃗)∥2F dΩ

=

∫
Ω

∥S(v⃗n − v⃗)∥2F dΩ

≤
∫
Ω

∥∇(v⃗n − v⃗)∥2F dΩ = ∥v⃗n − v⃗∥2H1
0 (Ω)2

where in applying Corollary 6.3.8 we set A = S(v⃗(x))
and E = S(v⃗n(x))− S(v⃗(x)) which are both symmetric.

S4. DERIVATION OF THE OPTIMALITY
SYSTEM

The Gateaux derivative of L computed at v⃗ in the direc-
tion ψ⃗ can be written as:

L′(v⃗)ψ⃗ =
∂

∂ϵ

∣∣∣
ϵ=0

(1
2

∫
Ω

(s1(S(v⃗ + ϵψ⃗))− z)2 dΩ (S6)

+

∫
Ω

λ⃗ ·
(
2p1∆(v⃗ + ϵψ⃗) +∇[∇ · (v⃗ + ϵψ⃗)]

)
dΩ

)
.

In the following we will need the differentiation formula
for a non repeated eigenvalue λ with respect to a sym-
metric matrix function A(ϵ) parametrized with respect
to a scalar ϵ ∈ R, see e.g. [2], Theorem 6.3.12, Chapter

6. Indeed, we have
dλ

dϵ

∣∣∣
ϵ=ϵ0

= ξ⃗(ϵ0)
⊤ dA

dϵ

∣∣∣
ϵ=ϵ0

ξ⃗(ϵ0) where

ξ⃗ is the associated normalized eigenvector.
The first term in (S6) can be rearranged using integra-

tion by parts and the linearity of Frobenius inner product
as

∂

∂ϵ

∣∣∣
ϵ=0

(1
2

∫
Ω

(s1(S(v⃗ + ϵψ⃗))− z)2 dΩ

=

∫
Ω

(s1(S(v⃗))− z)
∂

∂ϵ

∣∣∣
ϵ=0

s1(S(v⃗ + ϵψ⃗) dΩ

=

∫
Ω

(s1 − z) ξ⃗⊤1 S⃗(ψ⃗)ξ⃗1dΩ =

∫
Ω

(s1 − z) ξ⃗1 ⊗ ξ⃗1 : S(ψ⃗)dΩ

= −
∫
Ω

∇ ·
(
(s1 − z) ξ⃗1 ⊗ ξ⃗1

)
· ψ⃗dΩ

+

∫
Ω

∇ · ((s1 − z) ξ⃗1 ⊗ ξ⃗1ψ⃗)dΩ

= −
∫
Ω

∇ ·
(
(s1 − z) ξ⃗1 ⊗ ξ⃗1

)
· ψ⃗dΩ

+
������������∫
∂Ω

((s1 − z) ξ⃗1 ⊗ ξ⃗1ψ⃗)dΩ

where we have used the fact that for a matrix-valued
function A(x) and a vector-valued function ψ⃗(x) it holds

that ∇ · (Aψ⃗) = (∇ ·A) · ψ⃗+A : ∇ψ⃗. Using integration
by parts, the second term of Equation (S6) reads:

∂

∂ϵ

∣∣∣
ϵ=0

∫
Ω

λ⃗ ·
(
2p1∆(v⃗ + ϵψ⃗) +∇[∇ · (v⃗ + ϵψ⃗)]

)
dΩ

)
=

∫
Ω

(
2p1∆λ⃗+∇[∇ · λ⃗]

)
· ψ⃗ dΩ.

From the optimality condition

L′(v⃗)ψ⃗ = 0 ∀ψ⃗ ∈ H1
0 (Ω)

we obtain the strong form of the adjoint equation which
is a linear elliptic PDE of the form

−2p1∆λ⃗−∇[∇ · λ̃] = −∇ ·
(
(s1 − z) ξ⃗1 ⊗ ξ⃗1

)
in Ω

λ⃗ = 0⃗ on ∂Ω

where ξ⃗1(x) is the space varying eigenvector associated

to the minimum eigenvalue s1(x) and λ⃗(x) is the adjoint
variable. The Euler equation can be recovered by taking
the first variation of the Lagrangian with respect to the
control function m.

L′(m)h = β
(∫

Ω

mh+∇m·∇h dΩ
)
+
∂

∂ϵ

∣∣∣
0

∫
Ω

λ⃗·g⃗(m+ϵh) dΩ.

Due to the linearity of the inner product and of g⃗ we
have:

∂

∂ϵ

∣∣∣
0

∫
Ω

λ⃗ · g⃗(m+ ϵh) dΩ =
∂

∂ϵ

∣∣∣
0

∫
Ω

λ ·
(
g⃗(m) + ϵg⃗(h)

)
dΩ

=

∫
Ω

λ⃗ · g⃗(h)dΩ.
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Using integration by parts and the explicit form of g⃗ we
get:∫
Ω

λ⃗ · g⃗(h)dΩ =

∫
Ω

λ⃗ · ∇ ·
(
Ah

)
dΩ = −

∫
Ω

∇λ⃗ : Ah dΩ

since λ⃗ should satisfy homogeneous Dirichlet boundary
conditions. The Euler equation is obtained by the opti-
mality condition:

L′(m)h = 0 ∀h ∈ H1(Ω)

which gives

−β∆m+ βm−∇λ⃗ : A = 0.

S5. NUMERICAL IMPLEMENTATION

We select linear piecewise continuous finite elements
and use the software package deal.II [3] for the finite
element approximation while NLopt [4] is used for the
gradient-based optimization. The discretized system of
optimality conditions read

Av = Bm+ d
Aλ = f(v)
β(Am +M)m+B⊤λ = 0

where A and M are the standard stiffness and mass ma-
trix of the Finite Element formulation of vector-valued
and scalar-valued elliptic problems, respectively. The
discretized input operator is Bij = −

∫
Ω
∇ψ⃗i : Aψj dΩ

where ψ⃗i and ψj are the associated vector and scalar ba-
sis functions, respectively. The nonlinear forcing in the
adjoint equation is obtained from the weak formulation of
the adjoint equation as fi =

∫
Ω
(s1 − z) ξ⃗1 ⊗ ξ⃗1 : S(ψ⃗i)dΩ

where s1(v) and ξ⃗1(v) are obtained from the numeri-
cal solution of v. At each iteration of the gradient-
based optimizer the reduced gradient can be computed
by solving state and adjoint equation, then we have
∇J = β(Am+M)m+B⊤λ which is used for the control
update. Where not otherwise stated, the optimization is
completed when the L2 norm of the reduced gradient is
less than 10−7.

S6. OBJECTIVITY

Assume v(x, t) is the velocity field solving the OCP
(eq. (2)) or one experimentally measured as in Figs.
1a-b. Objectivity is a fundamental axiom of mechan-
ics [5] that states that the material response of a de-
forming continuum is independent of the reference frame
chosen to describe the motion, for all frames related by
Euclidean (or distance preserving) transformations of the

form: x̃ = Q(t)x + b(t), where Q(t) ∈ SO(2) and b(t)
is a translation vector. Therefore, the location of short-
time attractors, which is related to fluid deformation and
motion, cannot depend on the reference frame choice.
Denoting by (̃·) and (·) the same quantity expressed

in the x̃ and x frames, scalar objective quantities must
transform [5] as c̃(x̃, t) = c(x, t), objective vector fields
must transform as c̃(x̃, t) = Q(t)c(x, t), etc.. Short-time
attractors are objective because s̃1(x̃, t) = s1(x, t) [6].
By contrast, it is well known that the velocity field and
its streamlines are not as

ṽ(x̃, t) = Q(t)v(Q⊤x̃, t) + Q̇(t)Q⊤(t)x̃+ ḃ(t). (S7)

To visualize the effects of frame invariance, we solve
the OCP in eqs. (1-2) from the main text, setting for
simplicity d = 0, and z1 in order to create a short-term
attractor along the positive y−axis (Figs. S1a-b). We
then select a coordinate frame x̃ with ḃ = 0 and constant
angular velocity ω so that

Q(t) =

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
, Q̇(t) = ω

[
− sin(ωt) − cos(ωt)
cos(ωt) − sin(ωt)

]
.

(S8)
The frame rotation does not affect s1 and the loca-

tion of material attraction, but distorts the streamlines
of ṽ as shown in Figure S1c, highlighting the fact that
the streamlines or the velocity field are suboptimal to
identify material attraction. Using the same coordinate
transformation, a similar conclusion holds using the ex-
perimental velocity field used in Fig.1, as shown in Fig.
S2.

S7. SENSITIVITY ANALYSIS

S7.1 Sensitivity to p0 and space-dependent cable
orientation

To show the generality of our method to any attrac-
tor configuration, here we consider a circular target shape
shown in Fig S4 left. We note that increasing p0 increases
the control authority, and p0 = 1 is the ”least” control-
lable case because the isotropic active stress vanishes (see
eq. (1)). We select this worst-case scenario to study the
effect of space-varying cable orientation. In this case, the
control operator is g(m) = ∇·(Am) whereA = 2p1B(ϕ).
Figures S3 show the effect of space-varying cable orien-
tation ϕ with minimal control authority p0 = 1. We con-
sider three types of space-dependent ϕ(x), and show the
coorresponding results in separate columns. In the first
column, ϕ(x) varies continuosly in space from −1[rad] to
1[rad] according to the function ϕ(x) = sin(πx) cos(πy).
The second and third cases consider a radial and tangen-
tial orientation, respectively.

Figures S3 show two important results. First, our con-
trol problem is able to create short-term attractors that
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FIG. S1. Solution of the OCP in eqs. (1-2) from the main text, setting d = 0 and z1 to create a short-term attractor along
the positive y−axis. (a) Streamlines of the velocity field v. (b) s1(x) marks short-time attraction, confirmed by fluid tracers
advected by v over a short time, as Figs. 1,2,4. (c) Streamlines of the velocity field ṽ. The tilde frame is rotating with respect to
the standard frame at constant angular velocity ω = 120 rad (time is in nondimensional units). The rotated frame is displayed
at the time when it is instantaneously aligned with the standard frame. While v and the streamlines are frame-dependent,
s1(x) = s̃1(x̃) is not, correctly predicting short-term attractors regardless of the arbitrary choice of the reference frame used to
describe motion.

FIG. S2. Same as Figs. 1a-b for a different time. (a) Velocity field v(x). (b) v(x) and s1(x) field. (c) s1(x) locates a
short-term attractor, as verified by fluid tracers (green) advected by v(x) over a short time from uniform initial conditions,

as in Figs. 1b. (d) Velocity field ṽ(x̃) obtained from eqs. (S7,S8), setting ω = 1 rad/min, ḃ = 0 and starting with x̃ and
x aligned at the time shown t = 640. v(x) and its streamlines are frame dependent and hence are strongly affected by the
choice (motion) of the reference frame. By contrast, s1(x) = s̃1(x̃) is objective and predicts the correct location of short-term
attractors.

are very close to the target (compare the last row of Fig-
ure S3 with the circular target shown in Figure S4 left)
even in the worst-case setting (p0 = 1). In the case of
radial ϕ distribution (mid-column) the target eigenvalue
shape is reached with minimal control effort, as shown
by the magnitude of g(m). Second, as noticed in Fig. 1
and discussed in the main text, comparing rows two and
five shows that attractors remain hidden to inspection of
the velocity field v. Using p0 = 2 (80% reduction com-
pared to main text) and tangential cable configurations,
our optimal control framework easily reaches the desired
target, as shown in Fig. S4.

S7.2 Sensitivity to β

FIG. S6. J⋆
c optimal control cost, J⋆

s optimal state cost, N
number of iterations of LM-BFGS. Number of dof for these
simulations 3939 (2626 state +1313 control). p0 = 1 is in blue
while p0 = 10 in orange.
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FIG. S3. Effect of spatially inhomogeneous cable orientation ϕ. Each column corresponds to different ϕ(x) (first row), visualized
as a scalar field as well as a direction field eϕ(x) = (cos(ϕ(x)), sin(ϕ(x))). The first column corresponds to a continuous variation
of ϕ, while the second and third columns correspond to radial and tangential ϕ(x). Different raws show the corresponding
optimal velocity field v, control action m, active forces g(m) and minimum eigenvalue s1.

First, we study the effect of the control weighting
β for the rectangular-shaped target discussed in the
main text. Without loss of generality, we set the dis-

turbance d to zero, and split the cost functional into
state cost Js =

∫
Ω
(s1 − z)2 dΩ and control cost Jc =∫

Ω

(
m2 + ∥∇m∥2

)
dΩ, so that the overall functional is
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FIG. S4. Optimal control results for a circular target attractor, p0 = 2, and tangential cable configurations. From left to right:
eigenvalue target, minimum eigenvalue achieved and velocity field.

FIG. S5. Optimal patterns of velocity field v, control action m, active forces g(m) and minimum eigenvalue s1 for control
weigths parameters β = 0.001, 0.01, 1 ordered per columns. p0 = 1 and ϕ = π

4
constant.
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J = Js + βJc. As β is reduced, higher importance is
given to reaching the target, i.e., minimizing Js. How-
ever, a small β entails a highly irregular control, tak-
ing more iterations to converge within a given toler-
ance. Figure S6 shows a parametric study of the opti-
mal state cost J⋆

s , the optimal control cost J⋆
c and the

number of iterations needed to converge N as a function
of the control weighting parameter β. The setup with
p0 = 1 in blue takes more iterations to converge and
asymptotically reaches a higher state cost when decreas-
ing β. This is due to the structure of the control operator
g(m) = g = p1[2(B∇m+m∇·B)+(p0−1)∇m] which for
p0 = 1 cancels out the contribution independent of B(ϕ).
The setup considered in the main text with p0 = 10 is
shown in orange.

Next, we study the effect of β for the case of circular
target attractor shown in Fig S4 left and constant cable
orientation set at π

4 . Figure S5 shows the optimal con-
trol results for this configuration and increasing values
of β corresponding to different columns. As expected,
the largest β significantly penalizes the control cost and
prevents achieving the desired target.

S7.3 Sensitivity to the disturbance force

The sensitivity of the optimal cost functional to per-
turbation of the disturbance around a nominal value can
be deduced from the adjoint field [7]. To better illus-
trate this concept, consider the discrete Lagrangian of
the problem

Ld =
1

2
(s1(v)− z)⊤M(s1(v)− z)

+
β

2
m⊤(Am +M)(m)

+ λ⊤
(
Bm+ d−Av

)
,

where m,v,d and λ are the finite element discretization
of the control, velocity, disturbance and adjoint field, re-
spectively (see Section S5). s1 is a nonlinear function that
maps the finite element velocity field v to the discrete
representation of the minimal eigenvalue field s1. Fur-
thermore note that ∂

∂v
1
2 (s1(v)−z)⊤M(s1(v)−z) = f(v),

as defined in Secion S5. The optimal discretized cost
functional can be parametrized by the disturbance d as

J⋆
d (d) =

min
v,m

(s1(v)−z)⊤M(s1(v)−z)+βm⊤(Am+M)(m)
2

s.t. Av = Bm+ d.

Since at optimality, the constraints are satisfied together
with the first-order necessary optimality conditions de-

scribed in Section S5, it follows that

dJ⋆
d (d)

dd
=
dL⋆

d(d)

dd
= (s1(v)− z)⊤M

∂s1
∂v

∂v

∂d

+ βm⊤(Am +M)
∂m

∂d
+ λ⊤B

∂m

∂d
− λ⊤A

∂v

∂d

+
∂λ

∂d

⊤
(Bm+ d−Av) + λ⊤

=
(((((((((((((((
(s1(v)− z)⊤M

∂s1
∂v

− λ⊤A
)∂v
∂d

+
((((((((((((
(βm⊤(Am +M) + λ⊤B)

∂m

∂d
+
∂λ

∂d

⊤

((((((((
(Bm+ d−Av) + λ⊤.

Therefore, we have
dJ⋆

d (d)
dd = λ⊤, that is, the sensitiv-

ity of the optimal value of the cost functional to the
disturbance is simply the optimal adjoint field. The
first order expansion of the optimal cost functional is
J⋆(d+ δd) ≈ J⋆(d) + λ⊤δd where δd is a perturbation
of the disturbance from a nominal value.

Figure S7 shows the sensitivity for different target
shapes (rows): circular (as in Fig S4 left) or rectangu-
lar (as in Fig 2), and cable orientation (columns) as in
Fig. S3, together with the associated optimal cost J⋆.
Because we observed that changing the nominal value of
the disturbance does not fundamentally change the sensi-
tivity field, we set it to zero in all cases. As in the earlier
sections, we show the results of our sensitivity analysis
in the worst-case scenario corresponding to the minimal
control authority, i.e., β = 10−4 , p0 = 1. In the case of
circular target and radial ϕ, the most sensitive region is
around the target shape, while in the cases of rectangular
target with radial and tangential ϕ, we notice that the
direction of the sensitivity is roughly orthogonal to the
direction of the cable orientation. This, in turn, implies
that in the worst-case setting of p0 = 1, a disturbance
can affect the optimal cost the most if it is orthogonal to
the cable orientation. Finally, we show in Figure S8 the
result of the same control problem discussed in the main
text for the case of a random disturbance field both in
amplitude and orientation.

S8. ALGORITHMIC SUMMARY AND
APPLICATION TO AVIAN MORPHOGENESIS

Here, we summarize the steps required to apply our
optimal control algorithm (Eq. 3).

• Identify the imposed (or disturbance) force d(x),

• identify the boundary condition of the problem,

• specify the desired short-time attractor configura-
tion z(x),

• solve Eq. 3 and compute the optimal m∗(x).
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FIG. S7. Sensitivity to the disturbance force for different ϕ and target attractor geometries. Adjoint fields λ for circular (Fig
S4 left) and rectangular (Fig 2) target shapes ordered by rows, and for different configurations of cable orientation ϕ ordered
by columns as in Fig. S3. The adjoint represents the sensitivity of the optimal cost with respect to disturbance perturbations,

i.e. dJ⋆(d)
dd

= λ⊤. J⋆ quantifies the corresponding optimal cost.

FIG. S8. Random disturbance rejected by the control action. Control settings are the same as in Fig. 2 in the main text.

• This m∗, and the induced s∗1, guarantee that par-
ticles (or cells) will accumulate over short times to
the short-time attractor as shown, e.g., in Fig. 1c
and 2.

• If the disturbance forces d and boundary conditions
do not change over time, then m∗ will be the same
over time. Otherwise, m∗ must be recalculated ac-
counting for the new d and boundary conditions
to ensure the desired short-time attractor over the
subsequent short-time interval.

We now illustrate our approach on an example of avian
morphogenesis (as in Fig. 1), whose biological and phys-
ical details are available in [8, 9]. During gastrulation,
the chick embryo is a confluent two-dimensional circu-
lar epithelium surrounded by co-planar extra-embryonic
cells (Fig. S9a). Given the high viscosity of the tissue,

inertia forces are negligible, and the viscous forces are
balanced by active ones generated by actomyosin cables
that contract with intensity m along ϕ (Eq. 1). Extra-
embryonic cells migrate outward on a substrate, gener-
ating an outward velocity of the extra-embryonic tissue
[10, 11]. This traction force is an imposed force from
extraembryonic edge cells that the embryo cannot con-
trol [12], which, in our framework (Eqs. 2-3), we called
d. Because short-time attractors are defined from the
instantaneous s1 field at each t, and viscosity-dominated
active nematics (Eq. 1) do not have an acceleration term
(inertia is negligible), at each t the OCP generates an op-
timal distribution ofm given d and boundary conditions.
Therefore, as in all viscosity-dominated active nematic
flows associated with morphogenesis, time is effectively a
parameter in the force balance equation, and at each t,
the tissue-scale v results from the balance between vis-
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cous and current active and disturbance forces. We now
ask how the embryo would modulate m(x) to achieve a
desired short-time attractor configuration z(x), subject
to the imposed d(x) at a given time.

We seek the optimal distribution of m for the embryo
to generate a ring-shaped short-time attractor (z in Fig.
S9c inset) close to the embryonic boundary subject to
the imposed d. The choice of z is motivated by recent
experiments displaying that chick embryos can be molec-
ularly perturbed to display a circular attractor (Fig 4F
of [8]) instead of the linear one called Primitive Streak
(see Fig. 1) observed in the wild-type embryos. In these
experiments, we observed that the actomyosin cables are
approximately tangential (Fig 4 of [9]), thus we set ϕ
tangentially, as in Fig. S3 right. As in [8], because d
acts on the thin outer edge of extraembryonic cells, caus-
ing them to move outward with a constant velocity, we
model this effect by changing the boundary condition of
the control problem (Eqs. 2-3) to a nonzero value and
set vb = vbn, vb = 0.2, where n is the normal direction
to the boundary and the value of vb (in nondimensional
units) is consistent with experiments [8]. To reflect the
purely contractile activity of actomyosin cables in chick
morphogenesis, we modify the OCP enforcing m ≥ 0.
Solving our modified OCP (Eqs. 2-3), we obtain the

optimal m∗ (Fig. S9b) and the corresponding optimal s∗1
(c), displaying the desired circular short-time attractor.
Remarkably, this optimal solution is consistent with the
myosin distribution and attractor configuration achieved
in experiments. Specifically, by adding FGF2 (fibroblast
growth factor 2) to chick embryos, we were able to gen-
erate a circular ring of active myosin m (Fig. S9d) as
explained in detail in [9]. This control is indirect in that
adding FGF2 induces a ring of mesoderm cells, which
in turn generate active myosin. This ring distribution
of m (d), resembling the optimal one from our model
(b), strikingly generates a circular short-time attractor
in the chick embryo. To see this, we image the veloc-
ity field of perturbed chick embryo in (d) and compute
the s1 field shown in (e), which is consistent with (c).
For comparison, the uncontrolled (wild-type) chick em-
bryo develops a straight short-time attractor shown in
Fig. 1. These results show promising evidences that it is
possible to control short-time attractors in-vivo in chick
embryos. While controlling m in living embryos has lim-
itations, a highly active field of research is developing
mechanochemical and genetic manipulation techniques
toward this goal [13–16]. Therefore, we expect our work
to guide and benefit these experimental advances even
more in the near future, progressing our understanding
of morphogenesis mechanisms in living systems, and en-

gineering synthetic ones.
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FIG. S9. Application to avian morphogenesis. (a) Sketch of the chick embryo during gastrulation, as described in Fig. 1. The
embryo is a confluent disk-shaped epithelium where viscous forces balance active forces generated by actomyosin cables (Eq.
1). Extraembryonic cells are coplanar to the embryo and the outermost edge cells migrate outwards exerting traction forces on
the substrate, generating a constant-velocity outward motion called epiboly. These traction forces are imposed on and cannot
be controlled by the embryo. We ask what the optimal m∗ distribution, controlled by embryonic cells, would be to generate
a circular short-time attractor subject to the epiboly forces. (b) Optimal m∗ solution of the OCP (Eqs. 2-3) with parameters
p0 = 6 , p1 = 0.15, control weight β = 10−6, and boundary condition vb = vbn, vb = 0.2, where n is the normal direction
to the boundary. (c) Optimal s∗1 solution of the OCP, marking a short-time circular attractor. The inset shows the target s1
distribution z using the same colorbar of s1 (in nondimensional units). (d) Experimental distribution or mesendoderm cells,
i.e., cells that generate more active myosin in a chemically perturbed (controlled) chick embryo ([9] for details). The scale bar
is 500µm, and brighter colors indicate more active myosin. (e) Experimental s1 field in a chick embryo subject to the same
perturbation shown in d marks a circular short-time attractor. Axes are in µm, the colormap marks attraction rates (1/min).
For comparison, the wild-type (uncontrolled) chick embryo develops a linear short-time attractor (Fig. 1).
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