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Defect-mediated dynamics of coherent 
structures in active nematics

Mattia Serra    1,2  , Linnea Lemma3, Luca Giomi    4, Zvonimir Dogic3 & 
L. Mahadevan    2,5,6 

Active fluids, such as cytoskeletal filaments, bacterial colonies and epithelial 
cell layers, exhibit distinctive orientational coherence, often characterized 
by nematic order and its breakdown, defined by the presence of topological 
defects. In contrast, little is known about positional coherence, that is, whether 
there is an organization in the underlying fluid motion—despite this being both 
a prominent and an experimentally accessible feature. Here we characterize the 
organization of fluid motion in active nematics using the notion of Lagrangian 
coherent structures by analyzing experimental data of two-dimensional 
mixtures of microtubules and kinesin, as well as numerical data obtained from 
the simulation of the active nematodynamic equations. Coherent structures 
consist of moving attractors and repellers, which orchestrate complex motion. 
To understand the interaction of positional and orientational coherence, we 
analyse experiments and simulations and find that +1/2 defects move and 
deform the attractors, functioning as control centres for collective motion. 
Additionally, we find that regions around isolated +1/2 defects undergo high 
bending and low stretching/shearing deformations, consistent with the local 
stress distribution. The stress is the minimum at the defect, whereas high 
differential stress along the defect orientation induces folding. Our work offers 
a new perspective to describe and control self-organization in active fluids, 
with potential applications to multicellular systems.

Many out-of-equilibrium systems, from bird flocks down to biofilms 
and the cell cytoskeleton, consist of agents that consume energy and 
self-organize into large-scale patterns and collectively moving struc-
tures1–9, which are breathtaking in their beauty and complexity and 
relevant for embryonic development, wound healing and cancer10–13. 
Understanding the mechanisms that lead to these patterns and charac
terizing the phases of active matter systems will unravel their com-
plexity, suggesting ways to mimic them using synthetic materials and 
eventually control and design active systems using external fields.

Self-organized patterns are typically described in Eulerian  
coordinates, where the local velocity, pressure and orientation of the 
active building blocks are treated as fields within a fixed laboratory 

frame. Two-point correlation functions, spectral densities and other 
quantities inspired by studies of statistical steady states of turbulence 
in Newtonian fluids, are typical outcomes of this approach14,15. Topo-
logical defects, that is, localized singularities in the orientation of the 
active building blocks2, have also been extensively studied and their 
dynamics are known to be inherently entangled with large-scale chaotic 
flows15–17. But what is the relation between the dynamics of defects and 
the large-scale coherent motion in flow fields that are typically spatially 
heterogeneous and temporally unsteady?

A natural framework to address this question is provided by the 
Lagrangian description of fluid flow. By tracing the motion of passive 
particles in unsteady flows, which may also include chaotic paths,  
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position xt by transporting the curvature along the flow trajectories 
(Fig. 1), so that

κtt0 (xt, ξ2) = κtt0 (F
t
t0
(x0), ξ2) . (5)

Large values of κtt0 (x0, ξ2) mark the initial positions x0 of the nematic 
fluid that will undergo large folding in the time interval [t0, t], and 
similarly, κtt0 (xt, ξ2) identifies the final positions of the nematic fluid 
that experience small/large curvature changes (in the Supplementary 
Section 1, we provide general expressions for the material curvature 
and its alternative formulation in terms of Eulerian quantities such  
as flow vorticity, divergence and rate-of-strain tensor). Altogether, 
equations (3)–(5) completely quantify the maximum stretching  
and folding deformations of a continuum moving under a given  
flow map Ftt0. These kinematic measures are model independent and 
agnostic to the mechanisms driving the flow; hence they are applicable 
to experimental and computational velocity fields of arbitary origin 
and are readily implementable.

In terms of these measures, we can interpret the forward FTLE 
(fw FTLE or fΛ) as a scalar field over the initial particle positions x0  
that quantifies the maximum local deformation and identifies the 
location of maximum spatial separation of initially close particles 
over the time interval [t0, t]. Similarly, the backward FTLE (bw FTLE  
or bΛ), defined over the final positions xt, identifies the location of  
the maximum spatial convergence of initially distant particles over 
[t0, t]. Together, they demarcate regions of attraction (attracting 
CS) and repulsion (repelling CS) (Fig. 1). Despite the fact that FTLE 
ridges are rarely not material18, here we adopt FTLE-based CSs, instead  
of geodesic ones18,19, because we are interested in attraction and  
repulsion due to both shear and normal deformations, and FTLE CSs 
are simpler than geodesic CSs to compute and analyse.

CSs organize particle motion
We now employ these analytical tools to analyse experimental obser-
vations of two-dimensional microtubule-based active nematic liquid 
crystals assembled on a surfactant-stabilized oil–water interface27.  

one can often identify robust skeletons, commonly referred to as  
coherent structures (CSs)18–20, which shape the trajectory patterns 
and reveal the organizing barriers to material transport21,22. Because 
we expect our results to hold regardless of the specific Lagrangian 
integration time, we will often use CSs, which include Lagrangian CSs18 
and their recently developed short-time limits19,23. Here we combine 
theoretical concepts from nonlinear dynamics, active nematodynam-
ics simulations and experiments on suspensions of microtubules and  
kinesin to unravel the CSs underlying the chaotic flow of two- 
dimensional active nematics and their relation to the dynamics of 
topological defects.

Results
Lagrangian deformations and CSs
Our theoretical and computational framework for kinematic analysis 
starts by considering the velocity field v(x, t) of a planar active nematic 
fluid, and the corresponding flow map

Ftt0 (x0) = x0 +∫
t

t0

v(Fτt0 (x0), τ)dτ . (1)

This evolves the initial position x0 of a virtual tracer particle to the 
corresponding position Ftt0 (x0)  at time t, and its spatial derivatives 
describe the Lagrangian deformation of the nematic fluid over the  
time interval [t0, t]. Locally, a small fluid patch can be stretched, sheared 
and folded. Stretching and shearing (Fig. 1) are completely characte
rized by the right Cauchy–Green strain tensor field Ct

t0
(x0)  (ref. 24) 

defined as

Ct
t0
(x0) = ∇∇∇Ftt0 (x0)

⊤∇∇∇Ftt0 (x0) , (2)

where ∇∇∇Ftt0 (x0) is the Jacobian of the flow map.
Given a material patch consisting of straight fibres at initial time 

(Fig. 1), we use the notation λ1 ≤ λ2 and {ξ1, ξ2} to denote the eigenvalues 
and the associated orthonormal eigenvectors of Ct

t0
(x0). Then one  

can interpret ξ2 as the most stretched fibre (by a factor √λ2 ) and  
ξ1 is the least stretched one (by a factor √λ1 ). In chaotic systems,  
λ2 usually grows exponentially in time, it is typically rescaled to read 

Λ
t
t0
(x0) =

1
|t − t0|

log√λ2(x0), (3)

which denotes the largest finite-time Lyapunov exponent (FTLE). The 
maximum stretching along ξ2 implies that over long times, other fibres 
align with the local ξ2 direction (Fig. 1), and follows from an asymptotic 
analysis of the underlying dynamical system25.

By contrast, folding deformations determine variations in the 
curvature of material fibres over time26. This effect can be computed 
from the second-order spatial derivatives of Ftt0 (x0)  and provides 
additional information that complements notions of stretching and  
shearing characterized by first-order spatial derivatives. Starting  
with an infinitesimal patch of straight fibres at x0, from the ξ2-alignment 
property it follows that the most likely observable fluid folding,  
during the time interval [t0, t], is the one along the ξ2 fiber (Fig. 1). This 
leads to a Lagrangian measure of folding relative to the initial fluid 
configuration, given by

κtt0 (x0, ξ2) =
[(∇∇∇2

Ftt0 (x0)ξ2)ξ2] ⋅ [R∇∇∇F
t
t0 (x0)ξ2]

λ3/22

, (4)

where (∇2Ftt0 (x0)ξ2)ij = ∑
k
Ftt0 i,jk(x0)ξ2k , i, j, k ∈ {1, 2}  and R denotes a 

counterclockwise 90°-rotation matrix (Supplementary Section 1). 
Analogously, the same folding can be represented at the final  
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Fig. 1 | Lagrangian view of an active nematic fluid. The red curves demarcate  
the repelling and attracting regions in the flow identified by large values of  
the forward and backward FTLE. The repellers are based on the initial fluid 
configuration, whereas the attractors are based on the final configuration. 
Initially close tracers that are on opposite sides of a forward FTLE (fΛ) ridge will 
move far apart at time t. Similarly, initially distant tracers are attracted to a 
backward FTLE (bΛ) ridge at time t. Moreover an infinitesimal patch of nematic 
fluid at x0 will get stretched and folded over the time interval [t0, t]. Different fibres 
in this patch tend to align along the fiber ξ2(x0) corresponding to the maximally 
stretched direction, and the curvature of the folded patch is κtt0 (xt, ξ2).
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The large-scale chaotic dynamics of these materials is collectively 
driven by kinesin molecular motors that move along multiple filaments 
to induce relative filament sliding.

Using particle image velocimetry (PIV), we reconstruct the  
velocity field of autonomously flowing active nematics. Supplementary  
Section 2 and Supplementary Figs. 1 and 2 provide details of the 
PIV-derived velocity and its validation for computing the Lagrangian 
trajectories. From the velocity field, we compute fΛ and bΛ for different  
timescales ∣T∣ = ∣t − t0∣ using equations (1)–(3). Figure 2a,b shows  
the fΛ and bΛ fields for ∣T∣ = 100 s. As sketched in Fig. 1, particles are 
repelled from a fΛ ridge and attracted towards a bΛ ridge (covered by 
magenta dots). Figure 2c shows the final position of a set of particles 
initially released from a uniform grid and serves as a tracker of parti-
cle motion. Supplementary Video 1 shows the time evolution of the  
FTLE fields and particle positions. Although the active fluid seems  
to move chaotically, there is an underlying coherent skeleton, captured 
by the FTLE fields, that dynamically organizes their motion but remains 
inaccessible from the mere inspection of fluid tracers.

The FTLE also provides a ∣T∣-dependent map of the stretching  
and shearing Lagrangian deformation of the active continuum,  
with ridges that demarcate sets of the fluid that will experience  
higher deformations relative to their neighbours. Along the tra-
jectories, the Lagrangian deformation consistently integrates the  
separate contributions of viscous, elastic and active stresses deforming 
the nematic fluid and thus encodes a memory trace of the nemato
dynamic field.

To correlate these computed Lagrangian memory traces with 
direct observations of the deformation patterns near bΛ ridges, we label 
the regions of microtubule-based active nematics and observe their 
subsequent evolution (Supplementary Section 2). This is achieved by 
photobleaching nine circular regions with a radius of ~4 μm (Fig. 2d). 
Using the PIV data, we compute the bΛ field along with the position of 
Lagrangian tracers (magenta) initialized at t = 0 in correspondence 
with the photobleached regions (Fig. 2e). Stripe-shaped ridges of bΛ0

148 
reveal a horizontal shear layer, along with regions of distinctly high 
attraction and Lagrangian deformations. Our analysis predicts the 

evolution of advected and diffused photobleached patches (Fig. 2f and 
Supplementary Video 2). Overall, bΛ0

T  provides a ∣T∣-dependent map 
of attraction as well as stretching and shearing deformations maps 
over the entire domain.

Positive defects mediate attracting CSs
Having uncovered the organizers of the flow fields using Lagrangian 
CSs, we now turn to understand if and how they are related to the visible 
dynamics of topological defects, well known to be correlated with com-
plex, large-scale nematodynamic flows15,17. To enable this, we redid our 
experiments with the microtubule-kinesin system, slowed the dynamics 
by reducing ATP concentration to 2 μM and simultaneously measured 
both velocity v and nematic director n fields (Supplementary Section 2).

We mark +1/2 defects with red dots and −1/2 defects with cyan 
triangles (Fig. 1). Figure 3a–c shows bΛ for increasing time intervals, 
along with the positions of tracers (magenta), initially released from 
a circular blob and eventually attracted to a bΛ ridge. Supplementary 
Video 3 shows the time evolution of fΛ and bΛ along with particle posi-
tions. The FTLE fields again uncover the organizers of fluid motion that 
are inaccessible to trajectory plots alone.

Along with bΛ, Fig. 3a–c shows the evolution of topological defects, 
with the red arrows indicating the direction of motion of positive 
defects. These data suggest that positive defects move and deform bΛ 
ridges, which, in turn, directs particle motion. Displaying the director 
field with the bΛ field (Fig. 3c) shows that n aligns with the bΛ ridges, 
suggesting that the director tends to align with the direction of maxi-
mum stretching17. The entire time evolution of n and bΛ is shown in 
Supplementary Video 3 (middle). Interestingly, +1/2 defects appear to 
be in regions of low Lagrangian stretching or shearing deformation as 
quantified by the FTLE field. By contrast, the Lagrangian folding meas-
ure is maximum at the defects (Fig. 3d), where the absolute folding 
field |κtt0 (xt, ξ2)| is superimposed to the nematic director n at the same 
time as that in Fig. 3a.

To further quantify our observations on deformations at defects 
and the correlation of their dynamics with the FTLE bΛ, next we turn to 
numerical simulations of an incompressible (∇ ⋅ v = 0) planar uniaxial 
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Fig. 2 | Dynamics of a two-dimensional microtubule-based extensile active 
nematic system assembled on an oil–water interface. The PIV based velocity is 
reconstructed on a uniform 670 × 800 μm2 grid with a spatial resolution of 
15.6 μm and temporal resolution of 1 frame per second. a, fΛ field whose ridges 
mark repelling CSs. The white regions demarcate the set of particles that left the 
domain where the velocity field is available. b, bΛ field whose ridges mark 
attracting CSs. The magenta dots represent the final (t = 200) position of the 
tracers that started inside the magenta circle (shown in a) at the initial time 
t = 100. c, Final position of the tracers that started from a uniform grid at the 

initial time. The particles that started outside the magenta circle are indicated  
in green; see Supplementary Video 1. d–f, Fluorescence recovery after 
photobleaching experiment in active nematics. Initial and final configuration of 
the fluorescence recovery after photobleaching experiment (d and f). e, The FTLE 

bΛ
0
148 along with advected particles at t = 148, initialized to correspond to the 

photobleached regions at t = 0. Supplementary Video 2 shows the data in d and e 
for increasing t. Time is indicated in seconds (s). The colour bars encode the 
attraction or repulsion rates (in s−1). In a–c, the ATP concentration is 250 μM. In 
d–f, the ATP concentration is 18 μM.
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active nematic liquid crystal whose dynamics are given by the nemato
dynamic equations 

ρdv
dt

= −∇∇∇p + η∇∇∇2
v +∇∇∇ ⋅ (σe + σa) , (6a)

dQ
dt

= λSD +QΩ −ΩQ + γ−1H , (6b)

which can be derived from phenomenological arguments or micro-
scopic models, and capture typical experimental statistics15. Here ρ  
and η denote the density and viscosity of the nematic fluid, respec-
tively; d/dt = ∂t + v ⋅ ∇ is the material derivative; λ is the flow alignment  
parameter; and γ is the rotational viscosity28. In equation (6b), 
Q = S(n ⊗ n − I/2) denotes the nematic tensor, 0 ≤ S ≤ 1 is the nematic 
order parameter, I is the identity tensor, D = [∇v + (∇v)⊤]/2 is the  
symmetric part and Ω = [∇v − (∇v)⊤]/2 is the antisymmetric part of the 
velocity gradient ∇v. H = −δF/δQ = K∇2Q2 − (a2 + a4∣Q∣2)Q is the mole
cular tensor governing the relaxation dynamics of the nematic phase 
defined as the variational derivative of the two-dimensional Landau– 
de Gennes free energy F = ∫fdA, where f, the free-energy density, is28

f = 1
2K|∇Q|

2 + 1
2a2|Q|2 +

1
4a4|Q|4 , (7)

where ∣⋅∣ denotes the Frobenius norm (that is, ∣Q∣2 = QijQij), K is the  
orientational stiffness relating the elastic free energy to spatial  
inhomogeneities in the configuration of the nematic tensor and a2  
and a4 are the bulk moduli. Finally, σe = −λSH + QH − HQ denotes the  
elastic stress arising from a departure from the lowest free-energy 
configuration and σa = αQ is the contractile (α > 0) or extensile (α < 0) 
active stress exerted by the active particles along n. We non- 
dimensionalize distances by the length scale ℓ = L/5, where L is the  
system size, time by the viscous timescale τ = ρℓ2/η and energy by  
ℰ = K . Since the typical Reynolds number of microtubules/kinesin 
suspensions varies in the range of 10−5−10−3 depending on the ATP  
concentration, we eliminate the convective derivative in equation (6a) 
and numerically integrate equations (6a) and (6b) using finite differ-
ences on a 128 × 128 collocated grid with periodic boundary conditions.  
Following 15, we select our parameters so that the nematodynamic flows 
are turbulent and show that our results apply even to chaotic regimes. 
In all our simulations, we set the parameter values as follows: λ = 0.1, 
K = 1, a2 = −1, a4 = 2, γ = 10, α = −25 and L = 5, in previously defined 
rescaled units (Supplementary Section 3 provides the selection of 
parameters). This yields the velocity field v along with the nematic 
tensor field Q, from which we identify the topological defects  

(Supplementary Section 4). Our results apply to both contractile  
and extensile cases. We show extensile experimental and numerical 
datasets in the main text and contractile active nematics in the  
Supplementary Information.

Figure 4a–c shows bΛ for different time intervals ∣T∣, along  
with the position of an initially circular set of particles (magenta) that 
are attracted to a bΛ ridge. Analogous to our results of the analysis  
of the experiments, we find that bΛ ridges are pulled (red arrows)  
and shaped by moving Eulerian +1/2 defects and remain insensitive 
to –1/2 defects (Fig. 4a–c). In Supplementary Section 4 and Supple-
mentary Fig. 3, we quantify the correlation between the evolution  
of bΛ and defect motion. We first find a velocity field that transports  
and deforms bΛ over increasing T, and evaluate it at defects. The bΛ 
evolution along with defect velocities are provided in Supplementary  
Video 5. We then compute the relative angle between the bΛ velocity  
at defects and defects velocities. The mean and standard deviation  
of the relative angle associated with positive defects are six times smaller 
compared to those related to negative defects. We perform the same  
analysis on the experimental data in Fig. 3 and find that the mean and  
standard deviation of the relative angle associated with positive  
defects are three and four times smaller, respectively, compared  
with those related to negative defects (Supplementary Section 4).  
Supplementary Video 6 is similar to Supplementary Video 5 but for  
the experimental data. We note that bΛ is Lagrangian, that is, it con-
tains information of particle trajectories, whereas defects are Eulerian  
and hence agnostic to particle paths. This connection could provide  
a quantitative framework to control the Lagrangian motion and defor-
mation of active nematics by steering the position of Eulerian defects.

As in Fig. 3c, Fig. 4c shows that n tends to align with attracting 
bΛ ridges. By contrast, in contractile active nematics simulated using 
equations (6a) and (6b) with the same parameters of the extensile 
case and α = 25, we find that n tends to be perpendicular to attracting 
bΛ ridges (Supplementary Section 5 and Supplementary Fig. 4). In 
Supplementary Section 6 and Supplementary Fig. 5, we perform the 
same analysis as that in Fig. 4 on simulated extensile active nematic  
in confined geometry characterized by dancing defects29 and find 
again that n tends to align with attracting bΛ ridges, consistent with 
Figs. 3c and 4c. In Supplementary Section 7 and Supplementary Fig. 6, 
we provide a mechanistic argument that explains these observations. 
First, we show that in extensile (contractile) nematics, n tends to align 
with (perpendicular to) the leading eigenvector e2 of D. This provides a 
precise connection between n and Eulerian—or short-time—attractors 
(repellers)19, which are parallel (perpendicular) to e2. Then, we relate n 
to Lagrangian attractors.

In Supplementary Section 8 and Supplementary Fig. 7, we  
also provide an aggregate measure of positional coherence by  
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Fig. 3 | Dynamics of an extensile active suspension of microtubule bundles 
and kinesin at an oil–water interface with a 2 μM ATP concentration.  
a, bΛ for ∣T∣ = 200 s along with the position of tracers (magenta) attracted to  
a bΛ ridge and initially released from a circular blob. b,c, Same as a but for larger ∣T∣.  
The red arrows illustrate +1/2 defects pulling at the attracting bΛ ridges that, in turn, 
shape the Lagrangian particle motion. d, Absolute folding field |κtt0 (xt, ξ2)| for 

T = 200 s, along with topological defects and director field at the current time 
t0 + T as in a. Defects are invariably located at regions of high folding and low 
stretching or shearing Lagrangian deformation. In c and d, the director field n is 
shown in red. Time is in seconds. The colour bar in d encodes the Lagrangian 
folding in 1 μm–1, whereas the attraction rates are shown in s−1. Supplementary 
Video 3 shows the time evolution of fΛ and bΛ along with particle motions.
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using the inverse of the broadly used H−1 mixing norm30, and show  
how it decreases with increasing integration time T and activity α.  
Our results are consistent with17 where it was discovered that in  
the asymptotic limit T→∞, the braiding of positive defects contri
butes dominantly to the increase in topological entropy in active  
nematics. However, although17 quantifies the contribution of  
+1/2 defects to the aggregate (that is, space-independent) mixing,  
here we focus and uncover dynamic spatial structures (attracting 
Lagrangian CSs) that shape particle motion while being steered  
by +1/2 defects. In other words, we identify the spatiotemporal  
organizer of active nematics that complement previous analyses  
of global mixing properties. Figure 4d shows κtt0 (xt,ξξξ2)  associated  
with |T∣ = 2 (Fig. 4c). Consistent with our experimental results  
(Fig. 3), we see that +1/2 defects are preferentially located in regions  
of high Lagrangian folding and low stretching. We obtain results  
similar to Fig. 4 for contractile (α > 0) active nematics, simulated  
using the same parameters listed above and α = 25 (Supplementary 
Section 5). Supplementary Video 7 shows the same data as Supple
mentary Video 4 but for the contractile case. Finally, in Supplementary 
Section 9 and Supplementary Fig. 8, we confirm that Lagrangian  
structures contained in bΛ and κ remain typically inaccessible  
to Eulerian quantities such as the director field n, the nematic  
order parameter S, the eigenvalues and eigenvectors of the 
rate-of-strain tensor, the velocity divergence ∇ ⋅ v, and bend and splay 
elastic energies.

Stress gradients are maximum at positive defects
Motivated by the striking deformations associated with +1/2 defects,  
we analyse the stress distribution using the simulation data for  
extensile active nematics in Fig. 4. We find that the magnitude of  
both deviatoric and isotropic total stresses are minimum at +1/2  
defects, but their gradients have high values at these locations  
along the defect orientation (Fig. 5a,b), and thus induces folding  
deformation (Fig. 5d). We obtain similar results for contractile active 
nematics (Supplementary Section 10 and Supplementary Fig. 9), where 
the folding direction is towards the head of the defect as opposed to 
the tail (Fig. 5d).

To bridge the gap between the Lagrangian deformations, which 
accounts for the motion history of the nematic continuum, and Eulerian 
deformations based on an instantaneous configuration, we derived an 
exact formula for the Eulerian folding rate

̇κ(t,x,n) = [(∇∇∇D(x, t)n)n] ⋅ n⟂⟂⟂ −
∇∇∇ω(x, t) ⋅ n

2 (8)

experienced by an infinitesimal patch of nematic fluid with orientation 
n (Supplementary Section 1). The folding rate can be computed from 
v and n, and arises from spatial heterogeneities of the rate-of-strain 
tensor D and vorticity ω. For example, if the nematic continuum is an 
epithelium, ̇κ(t,x,n)  measures the bending rate experienced by the 
cell located at x with orientation n. Using equation (8), we also find 
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Fig. 4 | Lagrangian analysis of a simulated extensile active nematic fluid.  
The nematic fluid obeys equations (6a) and (6b). a, bΛ for ∣T∣ = 1.6, along with  
the position of material particles (magenta) attracted to a bΛ ridge and initially 
released from a circular blob. b,c, Same as a, but for larger ∣T∣. The red arrows 
illustrate that +1/2 defects pull the attracting bΛ ridges that, in turn, shape particle 

motion. In c, the red segments display the director field. d, Logarithm of the 
folding field modulus |κtt0 (xt, ξ2)| for T = 2, as that in c. Supplementary Video 4 
shows the evolution of the data in a and d for different T values. The positive 
defects are located at regions of high folding and low stretching or shearing 
Lagrangian deformation.
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Fig. 5 | Stress and deformation around an isolated +1/2 defect in simulated 
extensile active nematics. a, Maximum eigenvalue of the total deviatoric 
stress σD in the proximity of a +1/2 defect (red circle). The leading eigenvector 
of σD is marked by black lines and the the nematic director field, by red lines 
(Supplementary Fig. 10 shows separate viscous, elastic and active stress 
contributions). b, Pressure field normalized by its maximum absolute value 
characterizes the isotropic stress σI = −pI. c, Logarithm of the folding rate 

modulus of the active nematic, computed from equation (8). d, Sketch of the 
deviatoric and isotropic stress distribution near an isolated +1/2 defect in 
extensile active nematics (top). The arrow size is proportional to the stress level, 
and the blue arrow marks the direction perpendicular to defect orientation. A 
sketch of the material deformation near a +1/2 defect (bottom). Supplementary 
Fig. 9 shows the equivalent analysis for the contractile case.
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that ̇κ(t,x,n) is the maximum in the vicinity of +1/2 defects (Fig. 5c), 
consistent with the corresponding stress distribution (Fig. 5a,b) and 
Lagrangian folding (Fig. 4).

It is interesting to compare these results with experimental find-
ings that suggest a biological consequence of topological defects in 
epithelial layers12,31,32, where the deformations and stress at the defects 
is thought to elucidate how mechanical stimuli are converted into 
downstream biochemical signals. Positive defects with strength +1/2 
in monolayers of Madin–Darby canine kidney cells, for example, have 
been associated with sites of cell apoptosis31, with a possible explana-
tion being the high compressive stress at the defect location. This 
hypothesis has been tested by correlating the isotropic stress aver-
aged over several (~6) cell sizes in the neighbourhood of a topological 
defect during apoptosis31. Our findings, however, show that bending 
deformations are dominant at positive defects, suggesting that there 
may be other mechanisms at play associated with bending deforma-
tions at topological defects.

We observe a clear similarity of the extensile active nematic stress 
distribution (Fig. 5) with that experimentally measured in monolayers 
of Madin–Darby canine kidney cells31 during apoptosis. It is worth 
noting that the novel stress and deformation distribution around +1/2 
defects, together with the known ability of cells to sense curvature 
changes33, may lead to uncovering new feedback mechanisms in active 
epithelial dynamics34,35.

Discussion
By combining concepts from nonlinear dynamics, experiments  
on two-dimensional active nematics, and simulations of active  
nematodynamics equations, we found that the motion of active  
nematics is organized by dynamic (time-dependent) attracting  
and repelling CSs, whose motion is coupled to that of +1/2 topological 
defects. As the defects move, they deform attracting CSs, which in 
turn regulate collective motion. Furthermore, the Lagrangian 
timescale-dependent maps of stretching- and folding-type deforma-
tions of a nematic continuum show that +1/2 defects are correlated  
with locations of high bending and low stretching-type or shearing- 
type deformations. Motivated by this finding, we have discovered a 
characteristic stress distribution around +1/2 defects: the stress is 
the minimum at the defect, but its large gradient along the defect’s 
orientation causes differential stress that induces bending. The bend-
ing is towards the defect head (tail) for contractile (extensile) active 
nematics. Similar stress distributions were experimentally measured 
in monolayers of Madin–Darby canine kidney cells31. Finally, we have 
observed and explained that the nematic director tends to align along 
(perpendicular to) attracting Eulerian and Lagrangian CSs18,19 for exten-
sile (contractile) active nematics.

More broadly, using only the measured velocity and nematic direc-
tor, our results provide a quantitative framework for assessing the 
motion, mixing and deformation of active nematics. Emerging experi-
mental evidence associates biological functionality with topological 
defects of cells orientation12, actin fibre orientation36 and the ability 
of cells to sense and react to bending and stretching deformations33. 
From this perspective, our approach quantifies the stretching and 
folding deformations in a nematic continuum as timescale-dependent 
maps. Investigating the correlation between curvature and stretching 
deformation maps in epithelial layers and other similar systems could 
elucidate how cells couple mechanical inputs to intracellular signals 
in oriented active matter systems.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-023-02062-y.
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Methods
Experimental data
We discuss our microtubule-based active nematic experiments in detail 
in Supplementary Section 2.

Numerical data
We solve our active nematodynamic equations using a dedicated code 
developed elsewhere15.

FTLE, Lagrangian folding and Eulerian folding rates
Given a modelled or experimental planar velocity field v(x, t), we  
compute the Lagrangian attractors and repellers from backward  
and forward FTLE (equation (3)). To compute the FTLE, we first calcu-
late Ftt0 (x0) (equation (1)) by integrating the cell velocity field v(x, t) 
using the built-in Runge–Kutta solver ODE45 in MATLAB 2021b with 
absolute and relative tolerance of 10−6, linear interpolation in space 
and time and a uniform dense grid of initial conditions. Then, we com-
pute ∇∇∇Ftt0 (x0) taking the spatial derivatives of Ftft0 (x0) with respect to  
the initial conditions using centred finite-difference approximation. 
Using equation (2), we compute Ct

t0
(x0) and use the eigenvalue MATLAB 

function to calculate its largest eigenvalue field λ2 and the correspond-
ing eigenvector field ξ2. Using numerical centred finite differencing, 
we calculate the second spatial derivatives of Ftt0 (x0) and compute the 
Lagrangian folding field κ from equation (4). Using the same numerical 
schemes, we compute the Eulerian folding rate field ̇κ  (equation (8)).

Topological defects
We discuss the identification of topological defects, calculation of 
defect velocity and their correlation with the motion of Lagrangian 
attractors in detail in Supplementary Section 4.
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S1 Lagrangian folding and Eulerian folding rates
The curvature of an infinitesimal material fiber at time t starting from the initial position x0,
with an orientation θ, and curvature κ0, due to the transport and deformation induced by the
flow map Ft

t0(x0), can be computed1 as

κt
t0 : R2 × S1 × R → R,

κt
t0(x0, θ, κ0) =

[(∇2Ft
t0(x0)eθ)eθ] · [R∇Ft

t0(x0)eθ]
(eθ · [Ct

t0(x0)eθ])3/2 + κ0
det[∇Ft

t0(x0)]
(eθ · [Ct

t0(x0)eθ])3/2 ,
(S1)

where eθ = [cos θ, sin θ] and (∇2F t
t0(x0)eθk

)ij = ∑
k

F t
t0 i,jk

(x0)eθk
, i, j, k ∈ {1, 2} and R denotes

a counterclockwise ninety-degree rotation matrix. By evaluating κt
t0(x0, θ, κ0) for an initially

straight (κ0 = 0) fiber aligned with the dominant eigenvector of Ct
t0 (eθ = ξ2), we obtain Eq.

(4) in the main text.
In the instantaneous limit (t = t0), the material curvature rate of the material fiber1 is given

by

dκt
t0(x0, θ, κ0)

dt
|t=t0 = κ̇t0(x0, θ, κ0)

= [(∇D(x0, t0)eθ)eθ] · Reθ − ∇ω(x0, t0) · eθ

2 + κ0

[
∇ · v(x0, t0) − 3eθ · [D(x0, t0)eθ]

]
,

(S2)
where D denotes the rate-of-strain tensor, ω the vorticity, ∇ · v the divergence of the flow
and (∇D(x0, t0)eθk

)ij = ∑
k

Dij,k(x0)eθk
, i, j, k ∈ {1, 2}. Integrating Eq. (S2) along trajectories

Ft
t0(x0), provides an alternative formula to compute Eq. (S1) from know Eulerian quantities (see

Eq. B1 in1). Evaluating eq. (S2) along the current nematic director (eθ ≡ n), and assuming
κ0 ≡ 0, one can compute the instantaneous folding rate experienced by a nematic continuum
using only the velocity and the director fields inputs as

κ̇(t, x, n) = [(∇D(x, t)n)n] · n⊥ − ∇ω(x, t) · n
2 , (S3)

where n⊥ = Rn. We note that eq. (S3) allows quantifying the folding rate contribution coming
from spatial inhomogeneities of the rate of strain tensor and the vorticity. To deploy these
results in an experimental setting, consider a nematic continuum that describes an epithelial
tissue where n represents the cell orientation field. Then, for instance, eq. (S3) quantifies the
instantaneous bending rate of epithelial cells assuming that cells have initially zero curvature.

S2 Experimental data

Velocity and Orientation Fields
We prepared a microtubule-based active nematic at 1.4 mM ATP doped with a small fraction of
Alexa-647 labeled MTs2;3. We imaged the sample both using LC-PolScope and epifluorscence
microscopy. LC-PolScope provides a direct measurement of the orientation field of the MTs4.
Particle image velocimetry was used to find the velocity field from the fluorescence images. The
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LC-PolScope and fluorescence images were taken sequentially within 2s of each other; however,
we treat the lag as negligible in the data as calculating the velocity field coarse grains the
data in time. Imaging was done on a Nikon Ti Eclipse equipped with Andor Neo camera and
LC-PolScope device.

Importantly, we optimized the experimental conditions for particle image velocimetry anal-
ysis. In a test data set, we labeled a sample with two colors of fluorescent microtubules and
concurrently imaged both channels [Fig S1(a)]. In one color, nearly all the microtubules (1
mg/mL) were labeled, leading to the classic fingerprint pattern in an active nematic [Fig S1(b)].
In the other color, only 1 in every 10,000 microtubules was labeled, leading to a speckle pattern
[Fig. S1(b)]. We performed PIV on both image sequences and obtained smooth and visually
reasonable resulting flow fields [Fig. S1(d)(e)]. However, the detailed structures of the flow are
lost in the fully labeled nematic flow field, such as the vortex caused by two rotating plus 1/2
[Fig. S1 (a)(e)]. We hypothesized that PIV underestimated the velocities along the director in
the fully labeled nematic due to the relatively uniform fluorescence in that direction. To verify
this, we obtained the orientation field of the microtubules from OrientationJ on the fully labeled
images which finds the eigenvector of the structure tensor. We then decomposed the velocity
into components along the director un and perpendicular to the director um. The resulting
histograms show a bias in the fully labeled flow fields, in which un is systematically lower than
um [Fig. S1 (f)]. In comparison, the histogram of velocities from the speckle labeled images Fig.
S1 (d) show no systematic bias. The underestimation of speeds along the director also impacts
the average speed of the material, with the fully labeled fluorescence underestimating the speed
compared to the speckle labeled analysis [Fig. S1 (h)]. For this reason, we used sparsely labeled
nematics to measure flow fields using PIV throughout the study.

Figure S1: Speckle labeling optimizes particle image velocimetry (PIV) analysis. (a) Alexa 647 labeled
microtubules at 1 mg/mL and Alexa 488 labeled microtubules at <1 µg/mL in an active nematic.
(b) The fully labeled fluorescence image. (c) The speckle labeled fluorescence image. (d) The flow
field measured from PIV on (b). (e) The flow field measured from PIV on (c). (f) Histograms of the
magnitude of the velocity components along the director vn (orange) and perpendicular to the director
vm (blue) from the fully labeled PIV analysis (b)(d). (g) Histograms of the magnitude of the velocity
components along the director vn (orange) and perpendicular to the director vm (blue) from the speckle
labeled PIV analysis (c)(e). (h) A comparison of the average speed over time from the fully labeled
(b)(d)(f) and speckle labeled (c)(e)(g) image analyses.

Lastly, as additional validation we note that a side-by-side analysis of PIV velocity on micro-
tubules and bead velocities shows overlapping histograms of speed distribution as well as nearly
identical curves of average speed over time (Fig. 12 in5).
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Photobleaching
We prepared microtubule-based active nematic at 18µM ATP with Alexa-647 labeled MTs2.
It was important to use a low amount of ATP to slow the dynamics so that the timescale of
bleaching was faster than the movement of the material. We included a small fraction of MTs
labeled with Azide-DBCO-488 to simultaneously bleach regions and measure the velocity field
of the material. We used a Leica SP8 Confocal with a 20X NA 0.75 air objective to bleach
and image the sample. Since Image Brightness ∝

(
NA2/M

)2
, bleaching is most efficient at

low magnification and high NA. To bleach, we decreased the range over which the galvo-mirror
scans by 20 times and turned a 633nm laser power to its maximum. With this combination,
we were able to bleach in under 5 seconds so that the distortions due to material movement
were minimal. Using Leica software, we were able to define regions of interest to bleach defined
shapes. To image the sample we reduced the 633nm laser power to 0.5% of its maximum and
simultaneously imaged with a 488nm laser.

PIV velocity validation
We further verify the validity of our PIV-derived velocity by comparing its Lagrangian trajec-
tories with the evolution of photo-bleached patches. We first use the image processing software
Ilastik to extract photo-bleached patches from experimental images at different times. Then,
we use the set of patch points at the initial time, and advect them with the PIV velocity. Be-
cause photo-bleached patches undergo advection and diffusion while those advected by PIV only
advection, we compare the two using the distance between the corresponding patch centroids.
Movie8 and Fig.S2a show the evolution of the photo-bleached (cyan) top left patch (Fig. 2d-f)
along with the corresponding one (magenta) obtained from PIV velocity (blue), confirming the
validity of our PIV velocity. As an aggregate measure, we compute the average distance < d >
between the centroids of the nine photo-bleached and PIV-based patches nondimensionalized
by the smaller size of our domain L over time (Fig.S2b). Our analysis quantitatively shows the
validity of Lagrangian trajectories obtained by PIV velocities.

Figure S2: Validation of Lagrangian trajectories from PIV-velocities. (a) Evolution of the photo-
bleached (cyan) top left patch (Fig. 2d-f) along with the corresponding one (magenta) obtained from
PIV velocity. Movie8 shows the complete time evolution. (b) < d > denotes the average distance
between the centroids (+ markers) of the nine photo-bleached and PIV-based patches nondimension-
alized by the smaller size of our domain L over time.
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S3 Parameter selection for numerical simulations
In our numerical simulations we have made all physical quantities dimensionless by using the
following units. Unit of energy E = K, length ℓ = L/5, and time τ = ρℓ2

η
. Here K is the

Frank elastic constant, L the system size, ρ the fluid density and η the shear viscosity. As a
consequence of this choice, most parameters drop from the hydrodynamic equations and do not
require to be assigned a specific numerical value, with exception for the nematic order parameter
S, the rotational viscosity γ and the flow alignment parameter λ.

For simplicity, we used S = 1. Furthermore, as in nematic liquid crystals γ/η ranges from 1
to 103 (see e.g.6), and in the absence of more specific experimental estimates of this quantity,
we choose γ = 10η. Finally, as shown in7, the magnitude of the flow alignment parameter λ,
which is crucial in the laminar regime and for the hydrodynamic stability of active nematics,
has no visible effects in the chaotic regime. We choose λ = 0.1, well within the typical range
of passive nematic liquid crystals (i.e. −1 < λ < 1 although no fundamental principle prevents
other values).

S4 Positive defects move and deform attracting Lagrangian
coherent structures

We quantify the influence of moving defects on the motion and deformation of attracting La-
grangian Coherent Structures identified with the backward FTLE discussed in Fig. 4. Denoting
by q(·, t) := [Q11(·, t), Q12(·, t)]⊤ the vector containing the independent entries of the nematic
tensor, and by xd(t) := arg

xd(t)
q(xd(t), t) = 0 the time-t position of disclinations, we compute the

disclination velocities by Taylor-expanding the equation defining defect locations

arg
xd(t+δt)

q(xd(t + δt), t + δt) ≈ arg
xd(t)

q(xd(t), t) + [∇q(xd(t), t)vd(t) + ∂tq(xd(t), t)]δt = 0, (S4)

and requiring the leading order term to vanish, i.e.

vd(t) = −[∇q(xd(t), t)]−1∂tq(xd(t), t). (S5)

By the implicit function theorem, vd(t) exists whenever [∇q(xd(t), t)] is invertible. Following8,
we compute the index of the disclination at xd as

indd = 1
2π

n∑
i=1

∆i, ∆i = ϕi+1 − ϕi − π round
(

ϕi+1 − ϕi

π

)
, ϕn+1 = ϕ1, (S6)

where ϕi, i = 1, ..., 4 denotes the angle between the nematic director and the horizontal axis at
each of the grid points surrounding the defect.

To quantify the deformation of the FTLE field with respect to |T |, we use Digital Particle
Image Velocimetry to obtain a fictitious velocity field, vF T LE(x, T ), that deforms the FTLEt0−|T |

t0

onto FTLEt0−(|T |+∆T )
t0+∆T

(Fig. S3a). Evaluating such velocity field at the current location xd
i(T )

of defect i, we compute the relative angle between vF T LE and vd as

φi(T ) = arccos vF T LE(xd
i(T ), T ) · vd

i(T )
|vd

i(T )||vF T LE(xd
i(T ), T )| . (S7)
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(a) (b)

Figure S3: (a) Time intervals for backward-time FTLE computations. (b) Average angle (solid lines), in
degrees, between a vector field describing the deformation of the bw FTLE, and disclination velocities
as a function of |T | for simulated extensile active nematics discussed in Fig.4. Dashed lines show the
same quantities of solid lines using v instead of vF T LE . The bw FTLE evolution along with disclination
velocities is available as Movie5.

We note that T automatically specify t0 and vice-versa because the initial time of our analysis
tA is fixed. Fig. S3b shows the average angle (solid lines) < |φ| > between vF T LE and positive
and negative disclinations at each |T |, quantitatively confirming that positive disclinations move
in directions similar to vF T LE compared to negative disclinations. The overall angular distance
between positive disclination and vF T LE has a mean of 8◦. By contrast, for negative disclinations
the average misalignment is 50◦. Dashed lines show the same as solid lines using v instead of
vF T LE, highlighting how FTLE evolves almost materially, consistent with Movie4.

Performing the same analysis on the experimental dataset described in Fig. 3, we obtain
that the overall angular distance between positive disclination and vF T LE has a mean of 8◦ and
a standard deviation of 4◦, while 22◦ and 15◦ in the case of negative disclinations. Movie6 right
panel shows the time evolution of bΛ, vF T LE (green) and vd (red and cyan) along with Lagrangian
particles (magenta), confirming quantitatively that positive defects steer and deform bΛ, which
in turn organize particles motion. Movie6 left panel shows the director field n to confirm the
identification of defect type.

S5 Contractile active nematics
We perform the same analysis described in Fig. 4 in the case of contractile active nematics,
simulated using the same parameters of the extensile case and α = 25. Figure S4 shows the
same analysis of Fig. 4. Similarly to the extensile case, disclinations are located in regions of
low Lagrangian stretching and high Lagrangian folding (Fig. S4). The bΛ evolution along with
disclination velocities is available as Movie9. Performing the same analysis of Fig. S3, we find
that the mean angular distance between positive disclination and vF T LE has a mean of 9◦ and
a standard deviation of 6◦. By contrast, for negative disclinations, the average angular distance
has a mean of 62◦ and a standard deviation of 32◦.

Figure S4c shows bΛ for |T | = 2, along with the position of material particles (magenta)
attracted to a bΛ ridge and initially released from a circular blob. Interestingly, Fig. S4c shows
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Figure S4: Lagrangian analysis of a simulated contractile active nematic fluid obeying eq. (6). (a)
bΛ for |T | = 1.5, along with the position of material particles (magenta) attracted to a bΛ ridge and
initially released from a circular blob. (b-c) Same as (a) for larger |T |. Red arrows illustrate that
+1/2 defects pull the attracting bΛ ridges that, in turn, shape particle motion. In panel c), red lines
show the director field. (d) Logarithm of the folding field modulus |κt

t0(xt, ξ2)| for T = 1.5 as in (a).
Movie7 shows the evolution of panels a,d for different T . Positive defects are located at regions of high
folding-type and low stretching or shearing-type Lagrangian deformation.

that in the case of contractile active nematics, n is approximately perpendicular to attractors,
as opposed to extensile active nematics (Figs. 3-4 and Fig. S5), in which n is approximately
parallel to them.

S6 Analysis of the dancing disclinations flow in confined
active nematics

To elucidate the dynamics of the fluctuations of relative angles between vd and vF T LE (Fig.
S3), we analyze an extensile active nematic fluid confined in a channel9 in which disclinations
undergo a regular motion and the fluid velocity field consists of a vortex lattice (top right panel
of Movie10). In this flow, negative defects oscillate weakly about their average position close
to the channel boundaries, while positive defects move along the edge of vortices in the mid-
channel region. Similar to the previously analysed flows, the overall angular distance between
positive disclination velocities and vF T LE has significantly smaller mean and standard deviation
compared to those of the negative disclinations (Fig. S5a). Figure S5b shows a snapshot of bΛ
for |T | = 450 along with the nematic director field (red) and disclinations. The complete time
evolution of panel Fig. S5b is in the top left panel of Movie10. Consistently with Figure 3c,
also in this different extensile active nematic fluid, n is aligned with attracting bΛ ridges.

As shown in all our examples, bΛ are approximately material, i.e., v is a good approximation
of vF T LE. Therefore, understanding the alignment of vF T LE with the disclination velocities is
equivalent to studying the alignment between the fluid velocity at the disclination position and
the disclination velocity. The latter, in turn, features two different contributions resulting from
the fluid flow and the passive interaction with other defects. That is

vd = v − µ∇rF , (S8)

with µ a mobility coefficient. As a consequence, an isolated +1/2 disclination moves along the
streamlines of the flow, whereas in the presence of other defects this trajectory is perturbed by
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Figure S5: Analysis of the dancing disclination flow9 representing a simulated extensile active nematic.
(a) Same as Fig.S3b. (b) bΛ for |T | = 450 along with the nematic director field (red) and disclinations.
The top left panel of Movie10 shows the time evolution of (b) along with the disclination velocities in
red and cyan arrows and vF T LE (green). The bottom left panel shows the same as the top left panel,
with the velocity field (in magenta) instead of n. For comparison with typical Eulerian quantities, the
bottom right panel shows n (red), the leading eigenvector of S, e2 (cyan), along with to the leading
eigenvector field s2. (c-d) Time sequence of a zoomed-in region of the bottom left panel of Movie10,
showing bΛ, the motion of disclinations with their velocities (red and cyan), normalized vF T LE (green)
and v (magenta).

the attractive/repulsive forces induced by its neighbors. This dynamics is well exemplified by
Figures S5c-d showing a representative zoomed-in region of the bottom left panel of Movie10,
in which a positive disclination velocity (red) starts aligned with the fluid velocity (magenta)
(c), then deviates from it by crossing instantaneous streamlines (d-e), then realigns with v.

These departures from aligned to less aligned disclination and fluid velocities are responsible
for the < |φ| > oscillations in Fig. S5a, and in the more complex flows we analyzed. A detailed
study of what causes these oscillations is outside the scope of this work.

S7 Relative orientation between n, e2 and attracting co-
herent structures

To shed light on the relative orientation between attractors and the local nematic director,
consider the evolution equation for Q,

DQ
Dt

= λD + γ−1H , (S9a)

H = K∇2Q + aQ − b|Q|2Q , (S9b)

where DQ
Dt

denotes the co-rotational derivative of Q, and K, a, b are positive constants. In the
presence of defects, Q is small, therefore the last tern in eq. (S9b) is negligible. Neglecting also
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the elastic term reorienting the director, we have

DQ
Dt

≈ λD + aγ−1Q, (S10)

which tends to align D with −Q. More precisely, the fixed points of this equation satisfy
λD = −aγ−1Q. We denote by e1, e2 the eigenvectors of D associated with the eigenvalues
s1 ≤ s2, and note that Q has eigenvectors n, n⊥ associated with the eigenvalues αS/2, −αS/2.
Therefore, for extensile active nematics (α < 0), λD = aγ−1|α|S[n ⊗ n − I/2]. The leading
eigenvector of the tensor on the right-end side is n, hence e2 ∥ n. By contrast, for contractile
active nematics (α > 0), the leading eigenvector of the tensor on the right-end side is n⊥, leading
to e2 ∥ n⊥. This argument provides precise connections between n and Eulerian (or short-time)
attractors and repellers10, which are parallel to e2 and e1.

To connect e2 with Lagrangian attractors, we note that the highest shrinking rate quantified
by bΛ is experienced by the material fiber that at the final time is along the leading eigenvector bξ2
of the Cauchy-Green tensor computed in backward time (Fig. S6a). Therefore, the attraction
is towards bξ1 ⊥ bξ2. At the initial time, the preimage of the bξ1 direction is along fξ2, the
leading eigenvector of the Cauchy-Green computed in forward time. In11, we show analytically
that fξ2 coincides with e2 over short times. More generally, after a finite-time interval, the
deformation of a fluid patch depends on the deformation history encoded in the Cauchy–Green
tensor and the current stretching rate encoded in D. If the latter is aligned with the former,
then e2 is approximately parallel to bξ2 regardless of the short-time assumption used in11. This
is typically the case in extensile (contractile) active nematics, as the leading stretching direction,
and hence the direction of attractors, is approximately parallel (perpendicular) to n (Fig. S6a
right) because active stresses are dominant1. To further support our argument, Fig. S6b-c show
that ridges of bΛ are approximately parallel to bξ1 (black), e2 (white) and n, for the extensile
experimental data analysed in Fig. 3. In summary, we provided a mechanistic explanation
relating the relative orientation between n, e2, and attractors for extensile and contractile
active nematic flows, consistent with our numerical and experimental results (Figs.3c,4c, Figs.
S4c,S5b).

S8 Positional coherence as a function of time and activity
We quantify how coherence varies with the time scale T and the activity parameter α, by
studying the stirring exerted by an incompressible contractile active nematic flow on a passive
scalar c(x, t). The passive scalar evolves according to

∂tc + v · ∇c = 0 (S11)

with the initial condition c(x, t0) = c0(x). To measure stirring, we use the H−1 mixing norm,
broadly adopted in fluid flows13, and defined as

||c(·, t)||2H−1 = |||∇|−1c(·, t)||2L2 =
∑
k ̸=0

|k|−2|ĉk(t)|2, (S12)

1Our argument is consistent with12, who first used observations from microtubules images to associate the
leading stretching direction with n in extensile active nematics.
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Figure S6: Relative orientation between n, e2 and attractors. (a) Left. Deformation of a fluid patch in
backward and forward time, and its connection with the forward (backward) Cauchy-Green eigenvectors
f ξ1,f ξ2 (bξ1,b ξ2) and D eigenvectors e1, e2. Right. Deformation of fluid patch induced by active
stresses in extensile and contractile nematics. (b) bΛ for |T | = 246 along with n (red) and bξ1 (black)
for the experimental extensile active nematic analysed in Fig. 3. (c) bΛ for |T | = 246 along with n
(red) and e2 (white) for the extensile active nematics analysed in Fig. 3. Movie11 shows the time
evolution of panels b-c.

(a) (b)

Figure S7: (a) H−1 mixing norm normalized by its initial value for the activity value α = 25. The insets
show the concentration fields at different times computed solving Eq. (S11) with initial distribution
c0(x) = sin x. The complete time evolution of the concentration field is available as Movie12. (b) Same
as (a) for different activity values.

where
ĉk(t) = 1

L

∫
[0,L]2

e−ik·xc(x, t)dx (S13)

are the Fourier coefficients of c(x, t). The H−1 measures the variance of a low-pass-filtered image
of the concentration field; the smaller it is, the less coherence (more mixed) is the scalar field
on large spatial scales. In our analysis, c0(x) = sin x.

Fig. S7a shows the H−1 mixing norm normalized by its initial value as a function of T for
nematic flow analyzed in Fig.S4, with activity value α = 25. The insets show the concentration
fields at three different times, while the complete time evolution is available as Movie12. Fig. S7b
shows the normalized H−1 mixing norm for three different values of activity. As expected, spatial
coherence decreases with increasing T , and higher activity α. We note that the activity values
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used here are higher than those seen in typical biological nematic systems such as epithelial,
fibroblast and stem cells14, where positional coherence is present for larger T .

S9 Lagrangian vs Eulerian quantities
Here we compare Lagrangian fields with the corresponding commonly used Eulerian quantities.
Figure S8a shows a time frame of bΛ, n (red) and Lagrangian particles position (magenta) asso-
ciated with the experimental data described in Fig. 3. Figure S8b shows particles position and
∇ · v, a commonly used Eulerian diagnostic to identify regions of particles accumulation2. Fig-
ure S8b shows that the flow is approximately incompressible (∇ · v ≈ 0) and attractors remain
hidden to ∇ · v, while being identified by bΛ which captures contributions from both isotropic
(due to compressibility) and anisotropic (due to area-preserving) Lagrangian deformations (SI,
Section 2c of16 for a detailed explanation). Movie13 shows the time evolution of panels a-b, as
well as the maximum eigenvalue s2 of the rate of strain tensor and its associated eigenvector
e2 (white). These results confirm that Lagrangian structures contained in bΛ remain hidden to
typical Eulerian quantities as n, S, e2, s2 and ∇ · v.

Figures S8d-i show a time frame of Lagrangian and Eulerian quantities associated with the
simulated contractile active nematic described in Fig. S4. Panels d-f show bΛ, n, the nematic
order parameter S, e2, s2 and Lagrangian particles position. As in panels a-b, the attractors
captured by bΛ remain hidden to Eulerian fields. Interestingly, n can be approximately parallel
(a) or perpendicular (d) to bΛ ridges, as explained in SI Sec. 7. In both cases, however, there
are no Eulerian quantities able to identify which set of the domain corresponds to an attracting
LCS. Panels g-i show the Lagrangian folding map, the Eulerian fields quantifying bend and
splay distortions of the director, n and particles position. Similar to stretching deformations,
Lagrangian folding maps cannot be identified by inspections of Eulerian inhomogeneities of n
(e.g., the red inset marks regions of high Lagrangian folding and low bend and splay distortions).
Movie14 shows the time evolution of panels d-i.

More generally, the nematodynamic PDE (eq. 6) is an Eulerian balance relating v(x, t),
n(x, t) and their spatial derivatives at any x, t. If we consider two times t0 and t2 = t0 + T
and denote by Ft2

t0(x0) = x0 +
∫ t2

t0
v(Fτ

t0(x0), τ) dτ the trajectories of particles from t0 and t2,
information such as Ft2

t0(x0) or bΛ are invisible to eq. 6 evaluated from t0 to t2 because (eq. 6)
does not include Ft

t0(x0)-dependent terms. Therefore, while a Lagrangian quantity at (x2, t2)
(black square in Fig. S8c) has integrated information along trajectories (dashed black line),
these remain hidden to Eulerian quantities at (x2, t2).

2Note that using ∇ · v as a diagnostic for attractors can generate both false positives and false negatives, as
explained in SFig 2 of15.
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Figure S8: Lagrangian vs Eulerian quantities. a-b) bΛ, ∇ · v, n(red) and particles position (magenta)
associated with the extensile experimental data described in Fig. 3. The time evolution of panels
a-b is available as Movie13. c) Eulerian coordinates describe fixed spatial locations, while Lagrangian
coordinates label particles’ identity at the initial position and follow their trajectories over time. d-i)
Lagrangian and Eulerian quantities associated with the simulated contractile active nematic described
in Fig. S4. d-e) bΛ, n, the nematic order parameter S, e2, s2 and Lagrangian particles position. g-h)
Lagrangian folding map, Eulerian fields quantifying bend and splay distortions of the director, n and
Lagrangian particles position. The red inset marks regions of high Lagrangian folding and low bend
and splay distortions. The time evolution of panels d-i is available as Movie14.
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S10 Stress at +1/2 defects
To quantify the correlation between the total stress and the location and dynamics of topological
defects, we consider the solution of the neamtodynamic model (6) analyzed in Fig.S4 and Fig.4.
We first note that both the deviatoric viscous stress σv and the elastic stress σe = −λSH +
QH−HQ are traceless; the former follows from incompressibility, while the latter follows because
tr[H] = ∂FLdG/∂Q11 + ∂FLdG/∂Q22 = 0, Q11 = −Q22 and tr[QH − HQ] = 2tr[skew(QH)] = 0.
Finally, the active stress is also traceless because tr[σa] = αtr[Q] = 0. Thus, the maximum and
minimum eigenvalues of the above stress tensors have equal magnitude and opposite signs, hence
providing a scalar representation of both their maximum and minimum stress contributions.

Contractile case
Here we analyze the contractile active nematic described in SI Section 5. Figures S9a-d show
the maximum eigenvalue of σv, σe, σa and the total deviatoric stress σD = σv + σe + σa, along
with the defects location and the nematic director field (red). We find that the maximum total
deviatoric stress is minimum at defects (Fig. S9d and Fig. S9g, which shows a zoomed version of
the inset in Fig. S9d), meaning that the defect locations are regions subject to minimum shear
stress. The black arrows in Fig. S9g represent the leading eigenvector field of σD. Because
σv, σe, σa are traceless, the only isotropic stress σI = −pI is given by the pressure. With our
convention, positive pressure indicates compressing isotropic stress. Following the numerical
scheme in7, we have solved eq.(6) by using the streamfunction-vorticity formulation. To recover
the pressure, we solve the Poisson equation

∇2p = ∇ · [∇ · [σe + σa]], (S14)

obtained by taking the divergence of eq. (6a), and using incompressibility. Solving eq. (S14), we
determine the pressure distribution up to a constant that will not affect the pressure topology.
Here we set this constant such that the spatial average of the pressure is zero. Figures S9e,h
show the pressure field normalized by the maximum pressure in absolute value. Interestingly,
we find that positive defects are typically located in regions of low isotropic stress. A closer look
at Figs. S9g,h, reveals that while deviatoric and isotropic stresses are low at positive defects,
the corresponding stress gradients are high. In Fig. S9l, we show that the topology of both the
deviatoric and isotropic stresses induce differential stresses (blue), perpendicular to the +1/2
defect orientation, that bends the active nematic towards the head of the defect. This peculiar
stress distribution leaves a clear kinematic footprint in the deformation of the nematic medium,
as shown by the high values of Lagrangian folding at +1/2 defects (Fig. S4d), as well as the
Eulerian folding rate along n, computed from eq. (S3) and shown in Figs. S9f,i.

Extensile case
Here we analyze the extensile active nematic described in Fig.4. Figure S10 shows the same
analysis of Fig. S9 for extensile active nematics, obtained by solving eq.(6) using the same
parameters as the contractile case and α = −25. It is worth pointing out that Fig. S10h is
similar to the experimentally measured isotropic stress within monolayers of MDCK (Madin
Darby canine kidney) cells, in the vicinity of ±1/2 nematic defects in the cell orientation field17.
Indeed, Fig.3a of17 shows that +1/2 defects are located in a region of zero isotropic stress,
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(l)

Figure S9: Stress associated with a simulated contractile active nematic (α > 0). (a-d) Maximum
eigenvalue of σv, σe, σa, σD = σv + σe + σa, along with the topological +1/2 (cirlces), -1/2 (triangles)
and the nematic director field in red. (e) Pressure field normalized by the spatial maximum pressure
in absolute value completely characterizes the isotropic stress σI = −pI. (f) Logarithm of the folding
rate modulus of the active nematic, computed from eq. (S3). (g-i) Zoomed view of the insets in (d-f).
The black direction field in (g) shows the leading eigenvector of σD. The time evolution of the above
panels is available as Movie15. (l) Schematic of the local stress and deformation around a +1/2 defect.
Top: Sketch of the deviatoric and isotropic stress distribution (consistent with panels g,h) near a +1/2
defect. The arrow size is proportional to the stress level, and blue marks the direction perpendicular to
the defect orientation. Bottom: sketch of the material deformation induced by the stress distribution
in neighborhood of a +1/2 defect.
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and high isotropic stress gradient along the orientation of the defect, precisely as in Fig. S10h.
As in the contractile case, at +1/2 defects the deviatoric stress is zero and has a significant
gradient along the defect’s orientation (Fig. S10g). Figure S10l shows the effect of the stress
distribution around the +1/2 defects, which induces high folding as confirmed both by the
Lagrangian finite-time folding (Fig. 4d) and the Eulerian folding rate (Fig. S10i). The peculiar
stress distribution of low stress and high stress gradients around +1/2 defects is present in both
contractile and extensile active nematics. In the former, the stress gradient induces a folding
deformation towards the head of the defect (Fig. S9l), while in the latter towards the tail (Fig.
S10l).

The differential stress at negative defects is multiple times smaller compared to the one at
positive defects. This can assessed as follows. An approximate expression for the velocity field
in the neighborhood of a defect, can be obtained from solving the Stokes equation with a body
force f = ∇ ·σa, with σa the active stress associated to a defective configuration of the nematic
director, i.e. n± = cos(ϕ/2) ex ± sin(ϕ/2) ey (see e.g.18). This gives the following velocity

v+ = α

12η
{[3(R − r) + r cos 2ϕ]ex + r sin 2ϕ ey} ,

v− = αr

12ηR

{[(3
4 r − R

)
cos 2ϕ − R

5 cos 4ϕ
]
ex −

[(3
4 r − R

)
sin 2ϕ + R

5 sin 4ϕ
]
ey

}
,

and pressure fields
p+ = p0 + α

2 cos ϕ , p− = p0 − α

6 cos 3ϕ ,

with R a length scale representing the size of the neighborhood. Because ±1/2 defects are in
fact minimizers of the Frank free energy F = K/2

∫
dA |∇n|2, the elastic stress associated with

this solution is identically zero (in experiments, where the configuration of the director is not
that of an ideal defect, the elastic stress does not vanish, but is nevertheless expected to be
small compared to other contributions), thus

σ = −pI + η
[
∇v + (∇v)T

]
+ α

(
n ⊗ n − 1

2 I
)

.

Replacing the previous expressions of n±, v± and P± into this, one finds that σxy = 0, thus the
total of the stress is solely given by the aforementioned pressure field. Next, computing P± at
y = 0 − that is, along the longitudinal direction of +1/2 defects and along one of the three
equivalent longitudinal directions for −1/2 defects − readily yields

p+(x, 0) = p0 + α

2 sign(x) , p−(x, 0) = p0 − α

6 sign(x) .

The stress difference across defects is then

∆p+ = α ∆p− = −α

3 ,

as anticipated. In experiments, when the director n departs from the ideal defective configu-
ration n±, this discontinuous pressure profile is expected to be replaced by a smooth and yet
sharp pressure gradient and milder anisotropic stresses, but without substantially changing this
picture.
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(l)

Figure S10: Stresses associated with a simulated extensile active nematic (α = −25) following the
analysis shown in Fig. S9. The time evolution of the above panels is available as Movie16. Compare
panel h with with Fig. 3a in17, which shows the experimentally measured isotropic stress within
monolayers of MDCK (Madin Darby canine kidney) cells, in the vicinity of ±1/2 nematic defects in
the cell orientation field.
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