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Morphogen Patterning in Dynamic Tissues
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Embryogenesis integrates morphogenesis—coordinated cell movements—with morphogen patterning and cell
differentiation. While largely studied independently, morphogenesis and patterning often unfold simultaneously
in early embryos. Yet how cell movements affect morphogen transport and cells’ exposure over time remains
unclear, as most pattern formation models assume static tissues. Here we develop a theoretical framework
for morphogen patterning in dynamic tissues, recasting advection-reaction-diffusion equations in the cells’
moving reference frames. This framework (i) elucidates how morphogenesis mediates morphogen transport and
compartmentalization: cell-cell diffusive transport is enhanced at multicellular flow attractors, while repellers
act as barriers, affecting cell fate induction and bifurcations. (ii) It formalizes cell-cell signaling ranges in
dynamic tissues, deconfounding morphogenetic movements to identify which cells could communicate via
morphogens. (iii) It provides two new nondimensional numbers to assess when and where morphogenesis affects
morphogen transport. We demonstrate this framework by analyzing classical patterning models with common
morphogenetic motifs as well as experimental tissue flows. Our work rationalizes dynamic tissue patterning in
development, constraining candidate patterning mechanisms and parameters using accessible cell motion data.

DOI: 10.1103/h74q-3dgj

I. INTRODUCTION

Embryogenesis requires the development of the embryo’s
form (morphogenesis) and the diversification of its cells’
fates (differentiation) [1]. In morphogenesis, tissues grow,
stretch, and flow, commonly guided by molecular patterns
[2,3] through which cells communicate and coordinate fate
decisions. While morphogenesis and patterning are mostly
studied separately, they often unfold simultaneously, espe-
cially in early embryogenesis, when morphogenetic move-
ments are substantial and key patterns are established [1].
Cells commonly produce or respond to morphogens, sig-
naling molecules that can collectively elicit distinct cellular
responses and spread between cells via diffusion or direct
cell-cell transport. However, because morphogenetic move-
ments rearrange tissue patches as signals travel through them,
morphogenesis plays a confounding as well as generative role
in patterning and these roles are hard to disentangle [4–9].
Recent progress has started to elucidate how the mechanics of
morphogenesis can influence cell fates via mechanotransduc-
tion [10–14]. Yet the effects of motion itself—the kinematics
of morphogenesis—on cell fate coordination remain unclear
[5]. To this end, here we do not model the mechanical origins
of cell movements—topics addressed by tissue mechanics
[15–18]. Instead, we ask the following: given experimentally
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measured tissue flows, how does morphogenesis shape mor-
phogen transport through dynamic tissues?

The primary paradigms for morphogen patterning were
developed for static tissues. Reaction-diffusion (RD) models
[2,19] rely on nonlinear interactions and differential diffu-
sion to generate morphogen patterns that break symmetries
or amplify weak asymmetries [20–24]. Positional informa-
tion (PI), instead, refers to morphogen gradients cues cells
use to infer their relative positions and generate discrete
fate patterns [25]. RD and PI provide complementary per-
spectives on morphogen pattern formation and interpretation
[26], typically assuming static tissues. Pattern formation under
advective transport remains comparatively unexplored, with
recent studies focusing on protein patterns inside cells [27]
and in vitro systems [28]. Tissue growth also affects RD
dynamics [23,24,29,30] and PI [31–34]. However, embryo-
genesis involves complex tissue flows, and despite mounting
experimental evidence [5,6,35–37], general frameworks to ra-
tionalize dynamic tissue patterning are missing.

Due to imaging advances, cell motion data (tissue veloc-
ities or cell trajectories) and patterning data (snapshots of
gene expression, transcription factors, or signaling activity
across tissues) are becoming increasingly available. An out-
standing challenge is integrating noisy data on movement and
molecules [37]. Morphogens can coordinate spatiotemporal
patterns of gene expression—for example, Shh in the neu-
ral tube [38,39], FGF in the presomitic mesoderm [40], and
Nodal and Lefty in left-right patterning [21]. In many systems,
direct live imaging of morphogen ligands remains difficult, as
does measuring their kinetic parameters, such as diffusivity,
production, and removal rates [41], needed to validate pattern-
ing mechanisms. Even with adequate data, a core conceptual
question of dynamic tissue patterning remains: How does
morphogenesis affect the signals cells receive? Morphogens
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FIG. 1. Dynamic tissue patterning. (a) Eulerian coordinates represent fixed positions in space through which cells and morphogens move.
(b) Lagrangian (cell) coordinates comove with cells and are associated with labeled tissue patches over time. (c) Black curves depict snapshots
of morphogen concentrations c̄(x, t ) at t0, t1, t2, t3 in the Eulerian coordinate x. Red, white, and blue curves track morphogen exposure c(x0, t )
over time for three cells labeled by their Lagrangian coordinates 1x0, 2x0, 3x0 as they move through c̄(x, t ) (Movie 1 [46]). (d) Gene expression
dynamics and cell fate decisions depend on complicated functions f (c(x0, t )) of morphogen exposure over time. (e) Even in simple models
where fates follow directly from morphogen patterns (e.g., the fixed gradient solution to the French Flag problem [25]), morphogenesis can
affect fate patterns (in x) by reshaping morphogen gradients. Left: Diffusion from a source on the left boundary of a two-dimensional epithelium
forms a morphogen gradient colored with high (blue), medium (white), and low (red) morphogen concentrations. Middle: Tissue motion
(morphogenesis, black arrows) rearranges the established pattern, without additional diffusion. Right: The combined effects of simultaneous
diffusion and tissue motion generates a different pattern, distinct from mere rearrangement or static gradient formation.

activate intracellular processes based on cells’ morphogen
exposure over time [42–44] and the combination of motion
and memory calls for theoretical frameworks to understand
morphogen exposure along cell trajectories.

Theoretically, this requires a nonlinear reference frame
change from standard fixed Eulerian coordinates (x)
[Fig. 1(a)] to Lagrangian coordinates—comoving with cells
(x0 or xt ) [Fig. 1(b)]. Throughout, we bold vectors and matri-
ces but not scalars. Unlike Eulerian coordinates, Lagrangian
coordinates are always associated with the same cells, even
as they move. Figure 1(c) depicts a morphogen concentration
c̄—the overbar indicates functions of Eulerian coordinates
x—at different times (black curves). As cells (red, white,
and blue) move through c̄(x, t ), they experience a dynamic
morphogen exposure c(x0, t ). Confounding effects of mor-
phogenesis on morphogen patterning arise because c(x0, t ) �=
c̄(x, t ), and fate decisions happen in the cell’s reference
frame—i.e., in Lagrangian coordinates—taking c(x0, t ) as in-
put [Fig. 1(d)]. In addition to affecting the positions sampled
over time, morphogenesis may affect the morphogen concen-
trations at those positions by reshaping morphogen gradients.
It is not obvious how the interplay of diffusion and deforma-
tion (the relative motion of different tissue patches) affects
c(x0, t ) [Fig. 1(e)]. Here we develop a theoretical framework
for analyzing the dynamics of c(x0, t ), revealing intimate con-
nections on how morphogenesis mediates morphogen trans-
port and exposure. This framework constrains morphogen
patterning mechanisms—even when parameter measurements
remain inaccessible—using accessible cell motion data.

II. RESULTS

In static morphogen patterning, c̄(x, t ) is described by the
diffusion equation ∂t c̄ = ∇ · (D̄∇c̄) with isotropic diffusivity
D̄(x, t ), typically complemented by source, degradation, and

reaction terms. When advective motion is present, c̄ obeys the
advection-diffusion equation

∂t c̄(x, t ) =
Diffusion︷ ︸︸ ︷

∇ · (D̄∇c̄) −
Advection︷ ︸︸ ︷
v̄ · ∇c̄ + · · · , (1)

where v̄(x, t ) is an incompressible (∇ · v̄ = 0, a simplifying
assumption we relax later) velocity representing morpho-
genetic movements. Whenever possible, we omit the explicit
(x, t ) dependence. Throughout, we assume that morphogens
comove with cells due, for example, to extracellular matrix
(ECM) comovement, common in early amniotes [45]. Later,
we incorporate the effects of cell divisions and deaths and
relative tissue-ECM velocities [Supplemental Material (SM)
Sec. 1] [46].

A. Morphogen exposure in the cell frame

We rewrite Eq. (1), changing coordinates from Eulerian x
to Lagrangian x0, using the coordinate change xt = Ft

t0 (x0)
corresponding to cell trajectories [Figs. 1(a) and 1(b)].
Because Lagrangian coordinates map between cell initial
positions x0 and later positions xt , one can visualize
patterns on the initial (undeformed) or final (deformed)
configurations. This resonates with “fate mapping” techniques
in classical embryology in which initial embryonic regions
are labeled according to where they go. Equation (1) for
c̄(x, t ) transforms (SM Sec. 1 [46]) [47–49] into Eq. (2) for
c(x0, t ), the time-t morphogen exposure of a moving tissue
patch that started at (x0, t0):

∂t c(x0, t ) =
Lagrangian diffusion︷ ︸︸ ︷

∇x0 · (
Dt

t0 (x0)∇x0 c(x0, t )
) + · · · , (2)

where ∇x0 denotes derivatives with respect to x0. In
Lagrangian coordinates, the Eulerian advection and diffusion
terms reduce to a single term with an equivalent Lagrangian
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diffusion tensor,

Dt
t0 (x0) = D(x0, t )︸ ︷︷ ︸

Diffusivity

[
Ct

t0 (x0)
]−1︸ ︷︷ ︸

Morphogenesis

, (3)

where Ct
t0 (x0) = [∇x0 Ft

t0 (x0)]�[∇x0 Ft
t0 (x0)] denotes the

Cauchy-Green strain tensor, a symmetric positive definite
(i.e., with real orthogonal eigenvectors and real positive
eigenvalues) matrix and ∇x0 Ft

t0 (x0) is the deformation
gradient tensor. Therefore, in the cell frame, cell-cell
morphogen transport blends the Eulerian diffusivity sampled
along trajectories [D(x0, t ) = D̄(Ft

t0 (x0), t )] with the effect
of their deforming environment, encoded in Ct

t0 (x0). There is
no advection term in the cell frame, absorbed in the material
time derivative dt c(x0, t ) = ∂t c(x0, t ). However, the spatial
coordinate change x → x0 has a nontrivial effect on the
non-cell-autonomous term ∇ · (· · · ), representing spreading
across cells [Eq. (1), SM Sec. 1 [46]]. Strikingly, Eq. (3)
reveals that cell-cell transport in the cell frame inherits (i) the
space dependence, (ii) anisotropy (direction dependence), and
(iii) strength of deformation of its comoving environment.
Without deformation, Ct

t0 (x0) = I, recovering isotropic
Eulerian diffusion [Dt

t0 (x0) = D(x0, t )I] or Dt
t0 (x0) = DI if

D is uniform in space. Note that in Eq. (1) and Eq. (2) the
effective molecular diffusivity D may be locally regulated
along trajectories by local factors such as cell number density
[50] or ECM component concentrations [10]. Hereafter, we
consider a fixed D without loss of generality and note that our
framework applies to heterogeneous D.

B. Connection to the dynamic morphoskeleton

The relationship between Dt
t0 (x0) and Ct

t0 (x0) provides
an exact, profound connection between dynamic tissue pat-

terning and the dynamic morphoskeleton (DM) [51,52]—a
frame-invariant, compressed representation of complex tis-
sue flow defined from Ct

t0 (x0)—that has been applied across
model systems in developmental biology and active matter
[16,51,53–59]. The DM reduces noisy cell trajectory data
to a robust set of attracting and repelling coherent struc-
tures [60], hereafter just attractors and repellers. The largest
eigenvalue λt

t0 (x0) of Ct
t0 (x0) quantifies the maximum sep-

aration of cells starting near x0 along the direction of its
corresponding eigenvector ξt

t0 (x0) by time t . High values of
λt

t0 (x0) locate repellers, i.e., initial (x0) tissue regions where
nearby cells will maximally separate by time t [Fig. 2(a)
and 2(b)]. Conversely, performing the analysis in backward
time, high values of λ

t0
t (xt ) mark attractors, i.e., final (xt )

locations towards which initially separated cells will converge
by time t [Figs. 2(a) and 2(b)] [51]. The DM can be extracted
for tissue flows in one, two, or three dimensions. In one-
dimensional (1D) flows, attractors and repellers are dynamic
points [Fig. 2(b)]. In 2D flows, our focus here, attractors and
repellers are dynamic 1D curves [Figs. 2(a) and 4]. Arising
from the cumulative deformation along trajectories, the DM is
undetectable from inspection of v̄(x, t ), even in 1D [Fig. 2(b)].
See SM Fig. S3 [46] for a connection between Eulerian
analysis and the DM using the experimental flow data from
Fig. 4.

To interpret the connection between deformation (Ct
t0 )

and Dt
t0 [Eq. (3)], consider a linear, time-independent con-

vergent extension velocity field v̄ = α[−x, y], α > 0. Near
the origin, the x axis (y axis) represents a repeller (attrac-
tor) as trajectories on opposite sides will separate (converge)
[Fig. 2(c)]. For this flow, Ft

0(x0), Ct
0(x0), its eigenvalues

λt
0(x0) (largest) and 1λ

t
0(x0) (smallest), and Dt

0(x0) are as
follows:

Ft
0(x0) =

[
x0e−αt

y0eαt

]
, Ct

0(x0) =
[

1λ
t
0 0

0 λt
0

]
, Dt

0(x0) = D

[
λt

0 0

0 1λ
t
0

]
, λt

0(x0) = e2αt � 1, (4)

where 1λ
t
0(x0) = 1/λt

0(x0) � 1 due to incompressibility. It
is instructive to compare the eigenvalues and (orthogonal)
eigenvectors of Ct

0(x0) and Dt
0(x0). The largest (smallest)

eigenvector ξ t
0(x0) (1ξ

t
0(x0)) of Ct

0(x0) coincides with the
smallest (largest) eigenvector of Dt

0(x0), implying that the
local contracting direction experiences enhanced cell-cell
transport Dλt

0(x0) > D, while the expanding direction expe-
riences reduced cell-cell transport D/λt

0(x0) < D [Fig. 2(c)].
These effects were recently experimentally realized, im-
printing directionality on chemical waves [61]. The same
conclusions hold for general nonlinear and time-dependent
flows, where regions of high λt

t0 (x0) define the DM [Fig. 2(a)],
and the connection between Dt

t0 and Ct
t0 [Eq. (2)] reveals

that repellers (attractors) identify barriers (enhancers) to
morphogen transport from cell to cell [Fig. 2(d)]. These
connections have been recognized in fluid mixing research
[47–49] but not in the biological context.

It is key to recognize that (i) Dt
t0 (x0) parametrizes only

non-cell-autonomous mechanisms, distinct from the advective
transport of c: For D = 0, no morphogens are transported

between cells. (ii) The modulation of morphogen transport
in the cell frame is due to tissue deformation, leaving the
molecular diffusivity D unaltered. To visualize this effect,
we solve Eq. (2) using the linear convergent-extension flow
[Eq. (4)], an initial centered Gaussian c(x0, t0) [Fig. 2(e)
(top)]. Without deformation, Dt

t0 = DI and c(x0, t ) spreads
isotropically [Fig. 2(e) (bottom)], reaching (i.e., c > cthreshold)
four neighboring tissue patches (green) at time t . With defor-
mation (α > 0), Dt

t0 becomes anisotropic [Eq. (4)], enhancing
(diminishing) morphogen transport across the attractor (re-
peller) [Fig. 2(f)]. In the cell frame at the initial time (x0),
c reaches more cells along the direction of convergence than
of extension [Fig. 2(f) (left)]. This non-cell-autonomous ef-
fect arises because tissue deformation sharpens and flattens
morphogen gradients, modulating the diffusive fluxes between
cells.

Visualizing morphogen exposure and transport in the
cell frame (x0) [Fig. 2(f) (left)] deconfounds the effects
of tissue flows, which become overwhelming for general
flows (see Fig. 4 and Movie 4 [46]). Crucially, the effects
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FIG. 2. The dynamic morphoskeleton mediates intercellular morphogen transport in the cell frame. (a) DM consists of attractors and
repellers. High values (ridges) of λt

t0
(x0) [λt0

t (xt )] mark repellers (attractors) across which cells will maximally separate (converge) along the
direction ξt

t0
(x0) [ξt0

t (xt )] during the time interval [t0, t]. Repellers (attractors) are visualized at the initial x0 (final xt ) tissue configurations. λ, ξ

denote the largest eigenvalue and eigenvector of the Cauchy-Green strain tensor C. (b) DM for simulated, 1D time-dependent velocity data
consisting of two repellers and one attractor (red). (c) Visualization of Ct

t0
(x0) and Dt

t0
(x0) [Eq. (3)] for the linear convergent extension flow

[Eq. (4)]. In the Lagrangian frame, diffusive transport is enhanced (diminished) in the contracting (extending) direction. (d) Diffusive transport
is maximally reduced (enhanced) across repellers (attractors). [(e)–(h)] Visualization of diffusive morphogen transport in the cell frame for
static and uniformly deforming tissues. (e) An initial Gaussian of morphogen concentration c(x, t0) with max concentration cmax and variance
0.01 diffuses (D = 0.01, no flux boundary conditions) above a static 2D epithelium (length 1), simulated from t0 = 0 to t = 1 (all arbitrary
units). Tissue patch labels turn green if average c(x0, t ) > cmax/50. (f) Simultaneous diffusion and convergent extension (v = [−x, y]) with the
same initial condition and parameters as (e). Final morphogen concentrations depicted in Lagrangian coordinates at initial positions [c(x0, t ),
left] and final positions [c(xt , t ), right]. Tissue deformation reshapes morphogen gradients, mediating cell-cell diffusive fluxes in the cell frame.
[(g) and (h)] Same as (f) for a uniformly shrinking (v = −[x, y]) and expanding (v = [x, y]) tissues. Movie 2 [46] shows the time evolution
of panels (e)–(h). (i) Synthesis, diffusion, and degradation model dt c̄ = D�c̄ − kc̄. Starting at t0, morphogens are secreted at the left boundary
of a 1D domain with constant morphogen flux Q = −D ∂ c̄

∂x |x=0, and no flux at the right boundary. Within the domain, morphogens diffuse and
degrade uniformly (rate k). The solid black curve shows concentrations at t = k−1 with a fixed source at the left boundary and target tissue
patches (1–10), colored green if concentrations exceed a morphogen threshold (green dotted line). The dashed curve is the steady-state solution
c̄(x) = (Q/

√
Dk)ex/

√
D/k . [(j) and (k)] Same as (i), with the addition of steady, nonuniform flows [v(x)] with low (�1 = 2) or high (�1 = 5)

deformation rates generating a strong repeller (j) and attractor (k), marked in red. Final deformed configurations xt are shown below for high
deformation rates. For the time evolution, see Movie 3 [46]. (j) The repeller limits diffusive morphogen transport across it. (k) Diffusive
morphogen fluxes are enhanced away from the attractor. Parameters: [(i)–(k)] uniform D = 0.001, uniform k = 0.01, t = 100, L = 1. Fixed
c(0) on the left boundary (arbitrary units) and no flux on the right boundary. See SM Fig. S4(a) [46] for lower deformation rates and velocity
fields used in (j) and (k).

of morphogenesis on cell-cell transport are not specific to
this simple convergent-extension flow [Eq. (4)]. In general,
time-dependent nonlinear flows with arbitrary morphogen dis-
tributions and additional cell-autonomous terms for sources,
sinks, and reactions, these same insights about barriers and
enhancers to diffusive cell-cell morphogen transport remain
encoded in Ct

t0 (x0) [Eq. (3)], which quantifies morphogenesis
and can be computed from experimental data [51,54,57].

C. Isotropic vs anisotropic deformation

In incompressible flows, deformation is purely anisotropic
[Fig. 2(c)]. However, for compressible (∇ · v̄ �= 0) flows (e.g.,
due to cell division, death, and expansion), deformation has
anisotropic and isotropic components encoded in Ct

t0 , both af-
fecting Dt

t0 . We omit the dependence on x0 whenever possible.
In general, Ct

t0 has two eigenvalues, λ
t0
t � 1λ

t0
t > 0. To isolate
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isotropic and anisotropic effects, we use spectral decomposi-
tion and diagonalize Ct

t0 in its eigenbasis (SM Sec. 2) [46]

Ct
t0 =

[
λt

t0 0

0 1λ
t
t0

]
= Jt

t0

[
Rt

t0 0

0 1/Rt
t0

]
, (5)

where Jt
t0 = √

det Ct
t0 = √

λt
t0 1λ

t
t0 and Rt

t0 = √
λt

t0/1λ
t
t0 . To first

approximation, a small undeformed circular tissue patch is
deformed by tissue flows into an ellipsoid [Fig. 2(c) and SM
Fig. S2 [46]]. Jt

t0 (x0) represents the ratio of final (t) to initial
(t0) area of the tissue patch started at (x0, t0), while Rt

t0 (x0)
denotes the ratio of ellipse major (along ξt

t0 ) and minor axes
(perpendicular to ξt

t0 ), quantifying anisotropic deformation
(SM Sec. 2). In incompressible flows [Eq. (4), Fig. 2(f)], Jt

t0 =
1. Conversely, in purely isotropic deformation Rt

t0 (x0) = 1:
i.e., Ct

t0 does not have distinct eigenvalues and eigenvectors.
General tissue flows produce both except at distinct loca-
tions where deformation is isotropic: Ct

t0 (x0) = Jt
t0 (x0)I (SM

Fig. S2) [46].

D. Patterning in compressible tissue flows

For compressible flows, Eq. (1) gains an additional term
−c̄∇ · v̄. In Lagrangian coordinates, Eq. (2) then becomes

∂t c(x0, t ) = ∇x0 ·(Jt
t0

Dt
t0

∇x0 c)
Jt

t0
− c∇ · v(x0, t ) + · · · , (6)

where ∇ · v(x0, t ) = ∇ · v̄(Ft
t0 (x0), t ) indicates the velocity

divergence sampled across trajectories. Equation (6) shows
that also in compressible flows, the Lagrangian diffusion ten-
sor inherits the anisotropy of its deforming environment, and
Jt

t0 provides an additional isotropic modulation of cell-cell
transport magnitudes (SM Sec. 1) [46]. To gain intuition, con-
sider the compressible linear convergent flow v = −α[x, y],
α > 0, for which Ct

0 = e−2αt I and Eq. (6) gives ∂t c(x0, t ) =
∇x0 · (De2αt∇x0 c) + 2αc(x0, t ). Isotropic shrinkage enhances
diffusive fluxes, spreading signals to more cells [Fig. 2(g)].
Conversely, isotropic expansion (α < 0) confines signals to
fewer cells [Fig. 2(h)].

E. Dynamic cell fate bifurcations and fate induction

In development, morphogens are synthesized and degrade.
In the classic synthesis, diffusion, and degradation (SDD)
model, morphogens are locally produced at one boundary and
diffuse and degrade (rate k) uniformly on a static domain
[41,62]. In Fig. 2(i), the dashed black curve marks the steady-
state solution c̄ ∝ e−x/

√
D/k , while the solid black curve shows

a finite-time numerical solution c̄(x, t ).
In dynamic tissue patterning, source and target cells may

not maintain a fixed distance. However, even in the simplest
case, when they do, deformation between them may affect
their communication. To this end, consider an SDD model
with a stationary compressible flow that generates a repeller
between the source (left boundary) and target cells on the right
[red segment in Fig. 2(j)] but zero velocity at the boundaries so
that the spatial domain remains fixed. We display the solution
c(x0, t ) [purple curve in Fig. 2(j)] for different strengths of
the repeller (i.e., deformation rates). The repeller acts as a
diffusion barrier, creating a steep gradient of c(x0, t ): At time

t , cells initially sitting on either side of the repeller will be
exposed to markedly different morphogen concentrations. The
black curve is as in Fig. 2(j). This simple example illustrates
repellers’ capacity to aid in morphogen compartment forma-
tion due to a non-cell-autonomous effect caused by tissue
deformation, contrasted with mere advection. On the right of
the repeller, for example, the velocity (advective transport)
points to the right. Yet, cells on the right of the domain ex-
perience reduced exposure to morphogens from source cells.
These findings resonate with recent experimental evidence as-
sociating repellers with cell-fate bifurcations during zebrafish
body axis elongation at 12 hpf [54] and in chick embryogene-
sis at HH4-HH8 [56].

Another dynamic tissue patterning motif is the continual
induction of cell fates as cells move through dynamically
stable morphological structures. For example, in avian gastru-
lation, cells move towards and ingress through the primitive
streak (PS), a sharp attractor [51]. As cells internalize, they
complete epithelial-to-mesenchymal transitions that begin
before they reach the attractor and involve non-cell-
autonomous induction [63]. Morphogen patterning simulta-
neous with such a process could be described using the SDD
model with advective terms and a morphogen source (meso-
derm cells preinternalization) colocated with a sharp attractor
on the left boundary [Fig. 2(k)]. Figure 2(k) displays the
solution c(x0, t = k−1) for different deformation rates, show-
ing enhanced transport of c(x0, t ) at the attractor, resulting in
a steep rightward-expanding front. The left of the front, where
c is high, labels induced cells. The advection is to the left (see
xt ), yet cell-cell diffusive fluxes are enhanced to the right.

F. Conditions for morphogenesis-mediated tissue patterning

Our framework relies on the following assumptions: First,
morphogens diffuse through the ECM near cellular surfaces
[64], limiting free diffusion away from the tissue. Second,
the ECM moves with the underlying tissue, as observed in
the gastrulating quail embryo [4] and in Xenopus laevis [65].
When cells and ECM are not comoving [66,67], our frame-
work can be adapted by accounting for their relative velocity
(SM Sec. 1) [46]. While we focus on extracellular diffusion,
our framework applies to any transport mechanisms modeled
by diffusive fluxes [Eq. (1)].

Next, we provide conditions to assess if tissue flows im-
pact morphogen patterning during a time interval of interest
[t0, t = t0 + T ], which is equivalent to answering: Has de-
formation affected diffusive fluxes [Dt

t0 (x0)∇x0 c(x0, t )] in the
Lagrangian frame [Eq. (2)]? This transport question depends
on Dt

t0 (x0) and ∇x0 c(x0, t ), and there are two possible sce-
narios: (i) When there are mechanisms to maintain gradients,
∇x0 c(x0, t ) �= 0, diffusive fluxes in the Lagrangian frame will
be affected by deformations if Dt

t0 = D[Ct
t0 ]−1 deviates from

DI. (ii) When there are no mechanisms to sustain gradients
[∇x0 c(x0, t ) → 0], for deformation to be relevant, one also
needs to ensure that ∇x0 c(x0, t ) does not vanish before de-
formations become appreciable.

The first condition can be expressed as �−1 < T , where
�t

t0 (x0) = log(
√

λt
t0 (x0))/T is the finite-time Lyapunov expo-

nent, evaluated where deformation is highest, i.e., at repellers
or attractors (SM Sec. 3) [46]. �−1 is the Lyapunov time,
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TABLE I. Nondimensional parameters and conditions to assess when tissue deformations affect patterning. If gradients are not sustained,
and the fastest mechanism to eliminate gradients is not diffusion, L2/D in �2 should be replaced by the relevant timescale.

Parameters Physical meaning Conditions

�1 = �T time scale of interest
deformation time scale (i) With sustained gradients: �1 > 1

�2 = �L2/D time scale to eliminate gradients
deformation time scale (ii) Without sustained gradients: �1 > 1 and �2 > 1

which indicates the time taken for a small initial undeformed
tissue patch at x0 to undergo appreciable deformation—i.e.,
�−1 represents a deformation timescale (SM Sec. 3) [46].
In simple linear flows like Eq. (4), � = α, and �−1 < T ⇒
α−1 < T , meaning that for short T , deformation rates must be
stronger (larger α) to achieve Dt

t0 �= DI [68,69]. For nonlinear
stationary or nonstationary flows, � is the effective α and can
be computed from experimental tissue velocities [51] or cell
trajectories [52] for any time interval of interest. For scenario
(ii)—when no mechanisms are known to sustain ∇c �= 0—
one needs to ensure that the deformation timescale �−1 is
smaller than the diffusion timescale L2/D [3], where L is the
characteristic length of the region of interest for patterning
(SM Sec. 3) [46]. We summarize these conditions in Table I.

If gradients are not sustained, and the fastest mechanism to
eliminate gradients is not diffusion, then L2/D in �2 should
be replaced by the relevant timescale, e.g., degradation k−1.
Alternatively, if a relay mechanism [70–72] drives morphogen
spreading, then it should be replaced by L/w, where w is the
effective front speed. �1 and �2 are frame invariant, nondi-
mensional parameters, and the latter differs from the classic
Péclet number (Pe = |v|L/D), a ratio of advective and diffu-
sive transport rates, which does not account for deformation.
In the Lagrangian frame [Eq. (2)], advection is absent, and
a uniform velocity (Pe > 0) generates no deformation (�2 =
0). �2 can coincide with the alternative Pe = αL2/D based
on strain rates (α) but only in two specific cases: for linear
stationary flows as in Eq. (4) or for general flows over in-
finitesimally short time intervals [t0, t = t0 + δt] (SM Sec. 3)
[46]. By contrast, �2 applies to general, nonlinear mor-

phogenetic processes over finite times. Contrary to Eulerian
advection-reaction-diffusion equations [Eq. (1)], morphogen
dynamics in the moving cell frame depends on cumulative
tissue deformation [Eq. (6)]—not contained in Eulerian quan-
tities (Fig. S3 [46])—leading to new nondimensional parame-
ters. For an algorithmic procedure to verify the conditions in
Table I from experimental data, see SM Algorithm 1 [46]. See
SM Figs. S4 and S5 [46] for calculation of these conditions in
the SDD model and avian gastrulation data below.

G. Embryological light cones

The above results demonstrate how morphogenesis mod-
ulates diffusive fluxes [Figs. 2(c)–2(h)] and can thereby
influence which cells communicate [Figs. 2(j)–2(k)]. To for-
malize this effect, we ask the following: If a cell (x∗

0) sends
signals via morphogen transport over [t0, t0 + T ], then which
cells could receive them? Similarly, from which cells could
x∗

0 have received signals sent during a past time interval
[t0 − T, t0]. We define these regions over increasing durations
T as “embryological light cones” or ELCt0±T

t0 (x∗
0 ). In cos-

mology, light cones bound domains of causal interaction and
have been adapted in pattern formation in automata models
[73,74]. Although classic light cones invoke a constant speed,
the rate of molecular information propagation from cell to
cell in dynamic tissues varies, modulated by morphogenetic
movements (Ct

t0 ). Accordingly, ELCs can be curvilinear in-
stead of conic but retain apices at (x∗

0, t0) and expand into the
past and future. Future cones can be estimated by evolving
c(x0, t ), considering a source of c at x∗

0 and subject to known

FIG. 3. Embryological light cones reveal cell-cell interaction ranges. All patches are depicted in Lagrangian coordinates (i.e., based on
their positions at time t0). Past and future cones for tissue patches at x∗

0, t0 depend on known or candidate signaling mechanisms and tissue
deformation. A patch’s future ELCt0+T

t0 (x∗
0 ) (top) delimits cells (x0) at t = t0 + T that can receive morphogen signals from cells at x∗

0. A cell’s
past cone ELCt0−T

t0 (x∗
0 ) (bottom) delimits cells that could have sent signals to (x∗

0, t0) from (x0, t0 − T ). ELCs simulated with a fixed source
concentration c = 1 and threshold cmin = 0.1 in different morphogen transport scenarios. (a) ELCs in static tissue patterning via diffusion (D), a
production relay (front speed w ≈ 0.8, SM Sec. 4) [46], and in the SDD model (degradation rate k = 2). (b) ELCs in dynamic tissue patterning
via diffusion and stationary, isotropic negative (v = −0.8[x, y]), positive (v = 0.8[x, y]), and anisotropic v = 0.8[x, −y] deformation rates.
All 2D simulations use parameters: D = 0.2, t0 = 0, T = 1, and L = 2 (tissue size). For analytical predictions, see SM Secs. 4 and 5 [46].
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or candidate signal propagation mechanisms over [t0, t]. The
ELC bounds the set of cells (x0, t > t0) exposed to morphogen
concentrations above a threshold cmin (or threshold gradients
etc.) based on thresholded cellular responses. Similarly, esti-
mating past cones requires determining retrospectively the set
of cells (x0, t < t0) for which x∗

0 lies in their future cones at t0.
In static tissue patterning via simple diffusion, ELCs ex-

pand isotropically with time-dependent ELC radius r and are
time-symmetric. Figure 3(a) shows ELCs for diffusion (r ∝√

DT ); a production relay (r ∝ wT ); and the SDD model,
where the ELC expands to a fixed radius r ∝ √

D/k (SM
Sec. 4) [46], formalizing the classical notion of morphogen
range [75,76]. In dynamic tissue patterning, morphogen sig-
naling mechanisms rely on cell-autonomous sources, sinks
and reactions, augmented by the non-cell-autonomous com-
munication mechanisms in Eqs. (2) and (6), which affect
ELCs. ELCs are no longer time-symmetric, even with con-
stant deformation rates [Fig. 3(b), SM Sec. 4] [46], because
continuous deformation introduces an explicit-time depen-
dence to transport rates [consider for example Eq. (4)].

In an isotopically shrinking tissue (J < 1), future cones can
grow superlinearly, enhancing cooperativity, while past cones
are narrower. The opposite occurs in an isotropically growing
tissue (J > 1), where past cones can expand super-linearly
while future cone expansion slows. This reflects cells’ waning
global influence within a growing tissue and the efficiency of
patterning before extensive growth [1]. When deformation is
anisotropic (R > 1), past and future cones expand anisotropi-
cally, with enhanced and diminished ranges determined by the
directions of convergence and extension [Figs. 2(c) and 2(f)].
Next, we consider the ELCs of example morphogen sources
moving in measured avian gastrulation flows, which exhibit
time-dependent, heterogeneous deformation.

H. Morphogen transport using avian gastrulation flows

Avian gastrulation involves fast, compressible, time-
dependent tissue flows v(x, t ) over 12h [Fig. 4(a)] from
t0 = 0h (developmental stage HH1) to T = 12h (stage HH3),
transforming the embryo’s shape and forming the PS along
the embryo’s anterior-posterior (A-P) axis. The mechanisms
generating these flows have been studied in mechanochemical
models that generate the observed flows as output [16,78]. Si-
multaneous with this morphogenesis, gastrulation establishes
the three germ layers, signaling through pathways activated
by morphogens such as Nodal, Vg1, BMP, Wnt, and FGF
[63,79]. The transport mechanisms and parameters of relevant
morphogens remain largely unknown, though morphogens
may be transported via diffusion through the subepiblastic
ECM—comoving with cells [4]—and are likely limited to
interaction ranges much shorter than the embryo diameter
[80–82].

Here we take measured tissue flows as input to illustrate
how our framework can be applied to experimental data to
elucidate constraints on morphogen transport. We compute
the DM from v(x, t ), consisting of two repellers [Fig. 4(b)]
and one attractor [Fig. 4(c)], marking regions of highest
deformation quantified by λ12h

0h (x0h) and λ0h
12h(x12h) [51].

Repeller 1 marks the initial position (x0h) of the embryonic-

extraembryonic boundary. The PS is marked by the attractor
at the final embryo configuration (x12h). It is also informative
to visualize its domain of attraction: i.e., the initial cells (x0h)
that will eventually converge to the attractor [within red dotted
curve in Figs. 4(b) and 4(d)]. Finally, Repeller 2 [Fig. 4(b)]
splits the anterior-posterior domain of attraction that will con-
verge to the anterior and posterior PS. Checking conditions
in Table I on the DM, �−1 ≈ 4h, hence �1 ≈ 3 (Fig. S4
[46]), revealing Dt

t0 �= DI after t ≈ 4h and where these devi-
ations are strongest. Typical morphogen diffusivities are D =
0.1–100 µm2 s−1 [64]. Assuming diffusion-limited transport
with D = 1 µm2 s−1 and L � 200 µm (≈20 cell diameters),
�2 > 3.

To elucidate the strength and anisotropy of deformation
over [0h, 12h], we use the eigenvalues and eigenvectors of
C [Eq. (5)], displayed both on x0h and on the deformed em-
bryo configuration x12h (to relate quantities at x0h and x12h,
see Fig. S2 [46]). Figure 4(b) shows log λ12h

0h (x0h), i.e., the
strength of diffusion reduction (where >0) along the stretch-
ing direction (black bars), highlighting that diffusive fluxes
reduce between separating cells (maximal across repellers).
Figure 4(d) conversely reveals the directions (white bars)
along which tissue patches shrink the most, showing that
there is an enhanced diffusive flux [color bar as in Fig. 4(c),
where >0] perpendicular to the A-P axis within the domain
of attraction. It is instructive to visualize this information also
at the final embryo configuration x12h. Figure 4(c) shows the
strength of diffusion enhancement [where log λ0h

12h(x12h) > 0]
and the direction (white bars), highlighting how diffusive
fluxes are mostly enhanced laterally at the attractor, and
mildly along the radial direction in the fountain-shaped region
surrounding the anterior part of the PS and emanating from the
Hensen’s node. Because they exhibit the strongest modula-
tion of cell-cell morphogen transport, repellers and attractors
are the essential kinematic features that mediate this cell-cell
communication, reshaping ELCs.

To visualize our predictions, we examined tissue patches
[colored disks in Figs. 4(a)–4(d)] initialized (i) outside
Repeller 1 (blue and magenta) and therefore in the extraem-
bryonic tissue, (ii) in the anterior embryo (yellow), and (iii)
anterior and posterior of Repeller 2 (green and cyan). We
treat these five patches as morphogen point sources, secret-
ing morphogens at a fixed rate during [0h − 12h], using
a typical morphogen diffusivity D = 1 µm2/s (see Fig. S5
[46] for alternative values). The source patches move with
the tissue [Figs. 4(a) and 4(c)] but remain fixed in the cell
frame [Figs. 4(b) and 4(d)]. In essence, our framework re-
casts morphogen transport dynamics, typically challenging to
rationalize due to the complex flows, as an equivalent static
tissue problem over the initial embryo configuration x0h, with
the effects of cell motion on cell-cell signaling encoded in
D12h

0h (x0h). Figure 4(e) shows the temporal evolution of the
DM and Ct

0h for increasing t , decomposed as in Figs. 4(b) and
4(d). Overlaying the deformation fields, we plot a top-down
view of each source’s future ELCt

0h, with colored contours
marking the extents at each intermediate time. While initially
expanding slowly in all directions (Dt

0h(x0) ≈ DI), the effects
of cumulative deformation manifest in the expansion of ELCs
around 4h—when �t

0h > 1 on the DM—and later become
more dramatic. For example, before 4h, the green ELC ex-
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FIG. 4. Morphogenesis-mediated morphogen transport in avian gastrulation flows. (a) Tissue velocities during primitive streak formation
in the chick embryo (t0 = 0h corresponds to developmental stage HH1 and t = 12h to stage HH3), obtained via particle image velocimetry
[77]. From v, we compute cell trajectories (right) and tissue deformation encoded in C [51]. Source trajectories are depicted in colors with
markers at their final positions. [(b)–(d)] Analysis over the full 12h reveals two repellers and one attractor (the dynamic morphoskeleton
[51]), along with directions (C eigenvectors) of convergence (white) and separation (black) with lengths proportional to their corresponding
eigenvalues. (b) Two repellers (transport barriers) marked by high values of λ12h

0h on x0h. Bars indicate the direction of maximum separation
ξ12h

0h with length proportional to log λ12h
0h > 0. (c) One attractor (transport enhancer) marked by high values of λ0h

12h on x12h. Bars indicate the
direction of maximum convergence ξ0h

12h with length proportional to log λ0h
12h > 0. (d) Same as (c), displayed at the initial embryo configuration

x0 [color bar as in (c)]. [(e) and (f)] Simulations with sources secreting morphogens at rate Q, which diffuse with D = 1 µm2/s. Morphogens
and cells move with v(x, t ) (a). (e) Top (bottom) row depicts the maximally stretching (shrinking) directions as in (b) and (d). Scalar fields
on the top (bottom) depict the strength of cell-cell diffusion reduction (enhancement) on a log scale as in (b) and (d). Colored contours mark
tissue patches at their x0h positions raised above a threshold morphogen concentration Q/100 at t = 0, 2, 4, and 8h. Note that these results
do not depend on the value of Q > 0. (f) Contours from (e) along with the outermost contour and diffusive transport reduction (enhancement)
directions corresponding to t = 12h. White (black) bars mark the direction of diffusion enhancement (reduction) proportional to their length.
(g) Each source’s future ELCt

0h over increasing t . Nested contours correspond to ELCs at (t = 2, 4, 6, 8, 10, and 12h). Movie 5 [46] shows
the time evolution of cell trajectories and dynamic tissue patterning associated with (b)–(g). (h) Same as G for static tissue patterning (no cell
motion: v = 0) using the same parameters as in (g). (i) Same as (g), where tissue flows are present but D = 0, highlighting that the role of
morphogenesis in mediating non-cell-autonomous (or cell-cell) signaling is not due to cell-autonomous morphogen rearrangements.

pansion is mostly isotropic (expanding as a circle); after 4h,
diffusive fluxes become enhanced across the posterior, espe-
cially perpendicular to the A-P axis [Fig. 4(f)].

Figure 4(f) depicts the ELCs as colored contours for 2h
t intervals [as in Fig. 4(e)] and the final outermost contour

at 12h along with directions of maximum deformation (C12h
0h

eigenvectors). White (black) bars mark directions of enhanced
(reduced) diffusion with bar lengths indicating the strength
of this modulation. This panel also reveals the degree of
isotropic [J12h

0h (x0h)] and anisotropic [R12h
0h (x0h)] deformation
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FIG. 5. Generative patterning role of tissue deformation and cell number dynamics. (a) Initially uniform q(x0, t0) and N (x0, t0 ) on
an undeformed tissue with uniform patch areas A(x0, t0 ). Equivalently, n(x0, t0) = N (x0, t0)/A(x0, t0) and c(x0, t0) = q(x0, t0 )n(x0, t0 ) are
uniform. Tissue patches are differently colored and contain multiple cells (N (x0, t ) proportional to the number of elements in each patch).
(b) A gradient in deformation (∇x0 Jt

t0
, see xt patch sizes) generates gradients in q(x0, t ), while N (x0, t ) remains uniform and constant as

kd = ke = 0. Diffusion (with no-flux boundary conditions) lowers (raises) the per-cell morphogen exposure (q) of compressed (stretched)
tissue patches. (c) The same initial condition as in A and no morphogenetic movements (Jt

t0
= 1), but with heterogeneous kd − ke generates

heterogeneous N (x0, t ) [contrast cells per patch with panels (a) and (b)], lowering q in patches with more cells.

(SM Sec. 2) [46]. Entirely black (white) crosses indicate re-
gions of isotropic expansion (shrinkage) with J > 1 (J < 1),
where deformation is primarily isotropic. For example, tissue
expansion outside Repeller 1 reduces fluxes in all directions,
and a highly compressive region in front of Repeller 2 en-
hances diffusive fluxes in all directions. Interestingly, this
region gives rise to Hensen’s node. Regions where crossed
bars differ in length or color indicate R12h

0h > 1. Regions where
both bars vanish remain undeformed (J = R = λ = 1λ = 1).

Comparing Fig. 4(f) with Figs. 4(b) and 4(d) reveals the
cumulative effects of morphogenesis on ELCs, as predicted
from the DM. Repeller 1 effectively blocks communication
between blue and magenta source patches and cells inside
the embryo. The yellow patch experiences reduced lateral
cell-cell communication and an enhanced one along the A-P
axis, overlapping with the green ELC [Fig. 4(f)]. Green and
cyan cells are both positioned near the domain of attraction,
whose contraction expands their ELCs superlinearly to reach
other cells brought near the PS. However, because Repeller
2 forms between them, green and cyan ELCs do not overlap
[Fig. 4(f)]. This is due to reduced diffusive fluxes across
repellers, which have compartmentalizing effects. Consistent
with Figs. 2(j) and 2(k), the mediation of morphogen trans-
port by attractors and repellers likely influences cell fate
induction and bifurcation. It is key to notice that the modu-
lation of ELCs by tissue deformations can be inferred from
C—computable from experimental v—without solving any
advection-reaction-diffusion equations.

ELCs in Fig. 4(g) [3D view of Fig. 4(f)] should be con-
trasted with ELCs for static tissue patterning with identical
patterning parameters [Fig. 4(h)]. Without tissue flows (v =
0), ELCs expand sublinearly and isotropically by simple dif-
fusion. Instead, morphogenesis causes source cells’ signals
to reach a markedly different set of cells than in static tis-
sues. Without morphogenetic movements, blue and magenta
ELCs would penetrate into the embryo, yellow and green
ELCs would not communicate, and instead green and cyan
ELCs would overlap substantially. Crucially, morphogenesis
alone does not carry any signals from cell to cell and setting
D = 0 leads to nonexpanding ELCs [Fig. 4(i)]. We emphasize
that our framework applies to the analysis of any non-cell-
autonomous morphogen transport mechanisms that can be

modeled by an effective diffusion as in Eq. (1) (e.g., spreading
via cytonemes, transcytosis). See SM Fig. S5 [46] for ELCs
of these morphogen sources with other plausible patterning
parameters.

I. Per-cell morphogen exposure

So far, we considered c (# molecules per unit area).
However, when cell density (n, # cells per unit area) is hetero-
geneous, cell responses may depend on n [43,44,83,84]. To
this end, we define q = c/n—the average per-cell morphogen
exposure (# molecules per cell) within a tissue patch. A con-
fluent epithelium can be compressible due to cell divisions
[rate kd (x0, t )], extrusions [rate ke(x0, t )], or tissue stretching.
Using continuity equations (SM Sec. 5) [46], the dynamics of
n(x0, t ) within a Lagrangian tissue patch obeys

∂t n(x0, t ) = n(x0, t )[kd (x0, t ) − ke(x0, t ) − ∇ · v(x0, t )].
(7)

In growth-dilution models of patterning [8,85,86], for exam-
ple, ke = 0 and ∇ · v = kd (tissue growth) so that ∂t n = 0 (SM
Sec. 5) [46]. In chick gastrulation (Fig. 4), instead, uniform
division, localized extrusion, and heterogeneous tissue defor-
mation cause n to nearly double in the constricting embryo
[77] while n is halved in the extraembryonic tissue [87]. It
is instructive to decompose changes in n into changes in (i)
the patch’s number of cells N and (ii) the patch’s area A, as
n = N/A. Cumulative changes in A(x0, t ) = A(x0, t0)Jt

t0 (x0)
are determined by the velocity while divisions and ex-
trusions determine cumulative changes in N (x0, t ) along
trajectories:

N (x0, t ) = N (x0, t0)e
∫ t

t0
[kd (x0,τ )−ke(x0,τ )]dτ

. (8)

Combining Eqs. (7) and (8) with Eq. (6) yields Eq. (9),
for q(x0, t ) (SM Sec. 5) [46], which explicitly accounts for
division and extrusion and their role in morphogen dilution
and redistribution of unbound morphogens. As in Eq. (6),
non-cell-autonomous changes in q are still determined by
Dt

t0 and ∇x0 c, which decomposes into gradients in q, N , and
Jt

t0 . This further clarifies how morphogenesis contributes to
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cell-cell morphogen transport: (i) by modulating Dt
t0 and (ii)

via heterogeneous isotropic deformation ∇x0 Jt
t0 .

To visualize each effect, consider an undeformed 1D tis-
sue with uniform initial A(x0, t0), q(x0, t0), and N (x0, t0) and
assume morphogens are conserved (no sources or sinks). Sup-
pose that by a later time t tissue deformation (Jt

t0 ) gradients
develop due, for example, to heterogeneous active stresses
or externally imposed forces. This deformation (morpho-
genesis) generates heterogeneous q(x0, t ) [Fig. 5(b)] from
uniform initial q. Alternatively, suppose that heterogeneous
kd − ke develops [Eq. (8)]. Heterogeneous division and ex-

trusions likewise generate heterogeneous q(x0, t ) [Fig. 5(c)],
also from uniform initial q(x0, t0) [Fig. 5(a)]. These sim-
ple examples highlight the additional generative role of
morphogenesis in patterning enabled by explicitly account-
ing for cell density dynamics. Finally, n(x0, t ) may affect
patterning parameters directly. For example, both patch-
level production and removal may increase with n (SM
Sec. 5) [46]. Similarly, cell-cell boundaries (with density
proportional to n) may impede transport, thereby decreasing
D(x0, t ) [50],

∂t q(x0, t ) =
non-cell-autonomous︷ ︸︸ ︷

N−1∇x0 · (
Dt

t0

[
N∇x0 q︸ ︷︷ ︸

per-cell morph.
gradients

+ q∇x0 N︸ ︷︷ ︸
cell-number

gradients

− qN∇x0 log Jt
t0︸ ︷︷ ︸

isotr. deform.
gradients

]) − q(kd − ke)︸ ︷︷ ︸
dilution &

redistribution

+ · · · . (9)

III. DISCUSSION

Morphogenesis can be thought of as a coordinate
transformation—a view that dates back to D’Arcy Thomp-
son’s seminal work [88]. This view, influential in studying
how organismal form emerges and diverges, has not been
adopted in the study of morphogen patterning. Yet patterning
continues simultaneously with morphogenesis in early em-
bryos, when cells process morphogen exposure and acquire
fates in their moving frames (Fig. 1).

By recasting patterning equations (advection-reaction-
diffusion) in the cell frame Eqs. (2) and (3), we uncovered
elegant connections between morphogen patterning and mor-
phogenetic movements: tissue deformation modulates inter-
cellular (non-cell-autonomous) diffusive morphogen transport
in remodeling tissues (Fig. 2). This modulation is high-
est on the dynamic morphoskeleton [51]: a set of robust
multicellular attractors and repellers that reduce complex,
noisy cell trajectories to their Lagrangian kinematic units
[51,54,56,57]. Repellers (attractors) identify the strongest
barriers (enhancers) to diffusive transport, affecting cell-cell
interaction ranges across them (Figs. 2 and 4). These findings
clarify how morphogenesis mediates morphogen exposure
and cell-cell transport in dynamic tissues, with repellers aid-
ing compartmentalization and fate bifurcations [Figs. 2(j) and
4]—consistent with recent experiments in zebrafish [54] and
chick embryos [56]—and attractors supporting cell fate induc-
tion [Figs. 2(k) and 4]. Generating sharp repellers provides
sensitivity [sharp ∇x0 c; Fig. 2(j)] and robustness, as attractors
and repellers are the most robust features in spatiotemporal
flows [51], resolving a common static-tissue trade-off [89]. In
the cell frame, steplike gradients generated by repellers may
require less intracellular nonlinearity than smoother gradients
to produce discrete fate domains.

To assess when morphogenesis affects morphogen pat-
terning, we defined two nondimensional numbers (Table I),
computable from the experimental tissue velocities and
known or candidate signaling mechanisms. These numbers
account for cumulative tissue deformations in remodeling tis-
sues and are typically distinct from the classic Péclet number.
Additionally, Lagrangian coordinates (Fig. 1) have another

key advantage: they disentangle the confounding effect of mo-
tion in morphogen patterning [5–7], providing an equivalent
static (no advection) patterning problem that encodes cells’
deforming environments into an effective diffusion tensor
Eqs. (2) and (3). Morphogenetic movements can dramati-
cally reshape cell-cell interaction ranges compared to static
tissue patterning and embryological light cones formalize
these dynamic interaction ranges within highly remodeling
tissues (Figs. 3 and 4). In the avian gastrulation example
(Fig. 4), the strong cell-cell interaction range enhancement
perpendicular to the PS might aid in continuous mesoderm
induction [63,79,90]. Repeller 1’s compartmentalizing effects
resonate with the extraembryonic region’s waning regula-
tory ability [91–93]. Repeller 2’s compartmentalizing effects
resonate with the diverging gene expression of anterior and
posterior sections of the PS [51], which ultimately give rise
to different cell types [94]. Finally, we incorporated cell
number density dynamics into our framework [Eq. (9) and
SM Eq. 25] [46], formalizing key cellular mechanisms for
morphogen dilution, redistribution, production, and removal
[41]. This framework suggests additional generative roles of
morphogenesis in patterning, forming stable morphogen gra-
dients through heterogeneous tissue deformation [Fig. 5(b)] or
proliferation [Fig. 5(c)] from an unpatterned initial condition.

Historically, embryologists have compared fate maps
[Ft

t0 (x0), where cells normally go and what they become]
with specification maps (what cells x0 would become if
isolated at t0) to classify development as more “mosaic”
(autonomous fates decisions) or “regulative” (cell-cell inter-
actions required) [95,96]. Our framework helps rationalize
regulative development in dynamic tissues, revealing on x0

what mechanisms would enable cells to interact amid mor-
phogenetic movements. As next steps, we plan to examine 3D
morphogenesis examples, where attractors and repellers are
two-dimensional surfaces. Given the difficulty of relative mo-
tion between cells and the ECM, morphogenesis may strongly
mediate morphogen patterning in 3D, where the confounding
effect of motion is greater but resolved in Lagrangian coordi-
nates. In addition to testing candidate morphogen patterning
mechanisms given measured flow data, our framework can be
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used to guide the development of mechanochemical models
generating cell trajectories (e.g., vertex models [15]) or ve-
locity fields (continuum models [16]), supporting integrated
models of morphogenesis and cell differentiation. The lat-
ter will be particularly important when diffusing molecules
feed back on tissue mechanics [9,97]. Future extensions
include analysis of cell motion’s random, mixing compo-
nents [98,99] and explicitly accounting for dynamic neighbor
exchanges at single-cell resolution (as opposed to the deter-
ministic, continuum description of cell movements analyzed
here).

Nonlinear dynamics offers the mathematical frameworks
for describing spatiotemporal processes along trajectories. In
cell-fate dynamics, cell trajectories live in high-dimensional
gene expression space. Siggia, Rand, Briscoe, and cowork-
ers [100–102], using advanced nonlinear dynamics concepts
[103], devised a structurally stable compression (with mini-
mal fitting parameters) of high-dimensional gene expression
trajectories into low-dimensional cell fate dynamics among
discrete attractors (stable cell states), saddle points, and re-
pellers (unstable cell states). There, morphogen exposure
serves as a control parameter, affecting the routes between
discrete cell states via bifurcations (reviewed in [104]). Com-
plementary to this perspective, the dynamic morphoskeleton
[51] compresses tissue-space cell trajectories into minimal
discrete units: positional attractors (where cells converge from
their domains of attraction) and repellers (where cells sep-
arate). Both techniques provide geometrical insights that do
not require detailed simulations or depend on molecular de-

tails [105]. While these dynamical systems are in different
spaces (gene expression and position), they are intimately
related because cell positions affect morphogen exposure,
which instructs cell differentiation. Connecting attractors and
repellers in position space and their dual objects in the fate de-
cision space via morphogen exposures along cell trajectories
(present work) requires new ideas. This connection will lead
to quantitative frameworks for cell differentiation dynamics
mediated by tissue-space information in dynamic tissues.
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S1 Derivation of dynamic tissue patterning equations in Lagrangian co-
ordinates

Advection-diffusion equations have been transformed from Eulerian to Lagrangian Coordinates [1, 2] to study the
diffusive transport of scalars for incompressible [3] and compressible flows [4]. Here, we provide a compact derivation
that will later enable us to add additional mechanisms relevant to biological patterning. Consider a three-dimensional
tissue parametrized in Eulerian coordinates by x = [x, y, z], and denote by c̄(x, t) a scalar field representing the #
molecules/unit volume. An overbar denotes functions of Eulerian coordinates x and t. We assume that c̄(x, t) is
advected (i.e., co-moves) with the tissue with velocity v̄(x, t). Denoting by Ωt an arbitrary tissue region (volume) at
time t, the rate of change of the total amount of c̄ in Ωt depends on sources and sinks of c̄ in Ωt and the diffusive
fluxes through its boundary surface (∂Ωt):

dt

∫
Ωt

c̄dVt =

Sources & Sinks︷ ︸︸ ︷∫
Ωt

S̄cdVt +

Diffusive transport︷ ︸︸ ︷∫
∂Ωt

D̄∇c̄ · dAt, (S1)

where dt denotes the total (or Lagrangian) time derivative; dVt an infinitesimal volume element in Ωt; dAt a vector
representing an infinitesimal area element of ∂Ωt (magnitude represents its infinitesimal area with a direction outward
perpendicular to the area element); D̄(x, t) the diffusion tensor; and S̄c(x, t) sources and sinks of c̄. We keep a general
3D notation and note that for 2D tissues, Ωt represents an area and dAt its boundary curve. For 2D tissues (i.e.,
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confluent monolayer), c̄(x, t) can represent # molecules/unit area (Fig. S1). When the advective velocity of c̄ differs
from that of the tissue, (S1) can be modified to account for advective fluxes due to their relative velocity (see following
subsections).

Fig. S1: Morphogen exposure in a moving tissue patch. Initial tissue patch (material volume Ωt0
containing cells and ECM) and the same tissue patch

at a later time (material volume Ωt), after moving and deforming. Arrows represent the two terms on the right-hand side of (S1), including the production and

removal of morphogen within the tissue patch and diffusive transport to and from neighboring patches through lateral patch boundaries.

S1.1 Transformation into Lagrangian coordinates

We transform (S1) from Eularian Coordinates x into Lagrangian Coordinates x0 (the cell frame) using the trajectory

map x = xt = Ft
t0(x0) = x0 +

∫ t

t0
v(Fτ

t0(x0), τ)dτ . The left-hand side of (S1) transforms as

dt

∫
Ωt

c̄(x, t)dVt =

∫
Ωt0

[dtc(x0, t) + c(x0, t)∇ · v(x0, t)]J
t
t0(x0)dV0, (S2)

where Ωt0 denotes the tissue volume at the initial time t0 with infinitesimal volume elements dV0 and J t
t0(x0) =

det∇x0F
t
t0(x0), with ∇x0F

t
t0(x0) denoting the deformation gradient, i.e., the Jacobian of the trajectory map with

respect to x0. In (S2), functions without (̄) represent the same Eulerian function evaluated along tissue trajectories
(for example, c(x0, t) = c̄(Fτ

t0(x0), t)). To obtain (S2), we used dVt = J t
t0(x0)dV0 and

dtJ
t
t0(x0) = ∇ · v(x0, t)J

t
t0(x0), (S3)

which can be derived by Liouville’s theorem [5] and relates the Lagrangian (i.e. cumulative along trajectories) rate
of change of a tissue volume initially centered at (x0, t0) with the instantaneous velocity divergence at the current
position ∇· v̄(Ft

t0(x0), t), which in Lagrangian coordinates is denoted by ∇·v(x0, t). The first term on the right-hand
side of (S1) transforms as: ∫

Ωt

S̄c(x, t)dVt =

∫
Ωt0

Sc(x0, t)J
t
t0(x0)dV0. (S4)

The second term, representing diffusive flux through Ωt, requires us to transform both the gradient and dAt. The

former, ∇c̄, that is ∇xc̄(x, t), becomes
[
∇x0F

t
t0(x0)

]−⊤∇x0c(x0, t) (
⊤ denotes matrix transpose) and can be obtained

from the chain rule using the trajectory map. The latter transforms as dAt = J t
t0(x0)

[
∇x0

Ft
t0(x0)

]−⊤
dA0 [5], and

relates the boundary area element dAt of ∂Ωt to the same area patch dA0 of ∂Ωt0 . Rearranging terms across the
inner product yields∫

∂Ωt

D̄(x̄, t)∇c̄(x̄, t) · dAt =

∫
∂Ωt0

J t
t0(x0)

[[
∇x0

Ft
t0(x0)

]−1
D(x0, t)

[
∇x0

Ft
t0(x0)

]−⊤∇x0
c(x0, t)

]
· dA0. (S5)

Putting together Eqs. (S2, S4, S5), transformed back into a volume integral by the divergence theorem, we have:∫
Ωt0

[dtc+ c∇ · v]J t
t0dV0 =

∫
Ωt0

[
ScJ

t
t0 +∇x0

·
(
J t
t0

[
∇x0

Ft
t0

]−1
D
[
∇x0

Ft
t0

]−⊤∇x0
c
)]

dV0, (S6)

where all functions are in Lagrangian coordinates (i.e., with no (̄)), and hence we omit their dependence on x0 and t
whenever possible. Converting (S6) into differential form yields

dtc = ∂tc = Sc − c∇ · v +
(
J t
t0

)−1∇x0 ·
(
J t
t0

[
∇x0F

t
t0

]−1
D
[
∇x0F

t
t0

]−⊤∇x0c
)
, (S7)
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where dtc(x0, t) = ∂tc(x0, t) as there is no advective derivative in the frame moving with cells. If we further assume
isotropic Eulerian diffusivity D(x0, t) = D(x0, t)I in (S1), (S7) simplifies to

∂tc = Sc − c∇ · v +
(
J t
t0

)−1∇x0
·
(
J t
t0D

[
Ct

t0

]−1∇x0
c
)
, (S8)

recovering Eqs. (2,3,6) in the main text. From the Cauchy-Green strain tensor definitionCt
t0(x0) = [∇x0F

t
t0(x0)]

⊤∇x0F
t
t0(x0),

it follows that J t
t0(x0) = det∇x0

Ft
t0(x0) =

√
detCt

t0(x0).

S1.2 Instantaneous limit

To gain intuition, we take the limit t → t0 to examine the first-order correction (in time) to diffusive fluxes in the cell
frame. The right Cauchy-Green strain tensor becomes [6]

Ct
t0(x0) = I+ 2S(x0, t0)(t− t0) +O

(
|t− t0|2

)
(S9)

in terms of the Eulerian rate of strain tensor S = 1
2

(
∇v +∇v⊤). Substituting (S9) into (S8) yields D

[
Ct

t0

]−1 ≈
D[I− 2S(x0, t0)(t− t0)]. Similarly, J t

t0(x0) ≈ I+∇·v(x0, t0)(t−t0). Hence, keeping leading order terms in T = |t−t0|,
(S8) yields:

∂tc(x0, t) = Sc − c∇ · v +∇x0 · (D[I− 2ST ]∇x0c). (S10)

showing that the leading order effects on morphogen transport in the cell frame are governed by S(x0, t0) and are
maximal along its orthogonal eigenvectors with modulation encoded in its eigenvalues s2(x0, t0) ≥ s1(x0, t0). Over
short times, the correction to DI becomes additive instead of multiplicative and is typically negligible in multicellular
flows because T ≈ 0 and strain rates (S) are small.

S1.3 Relative tissue-ECM velocities

Here we briefly summarize extensions of our approach to account for relative motion between cells and the ECM.
Suppose that cells and ECM move with distinct velocity fields v̄cell(x, t) (for cells) and v̄ECM(x, t). Note that the
Lagrangian coordinates of interest x0,Cell (the cell frame) are now distinct from x0,ECM. We will use the shorthand
v = vcell and x0 = x0,Cell. We need c(x0, t) to address how i) motion affects morphogen exposure histories and ii)
deformation affects cell-cell interaction ranges. Returning to (S1), an additional advective flux term c̄[v̄− v̄ECM] arises
due to the mismatch between the motion of the ECM (containing morphogens) and the cells (Ωt). Carrying this
through the derivation yields the following additional term on the right-hand side of the differential equations (S8):

+
(
J t
t0

)−1∇x0 ·
(
J t
t0

[
∇x0F

t
t0

]−1
(v − vECM)c

)
. (S11)

Note that v and vECM here are both taken as functions of x0, representing cells’ own velocities along trajectories and
the velocities of ECM at the corresponding spatial coordinates. Note also that J t

t0 and ∇x0F
t
t0 encode deformation

associated with the cell velocities, as we have transformed into their Lagrangian coordinates, not those of the ECM.
Accounting for the correction term ((S11)), consider the following cases:

1. If v ̸= vECM, cells experience an effective advective flux due to their motion relative to the morphogen concen-
tration. In general, we have

∂tc = Sc − c∇ · v +
(
J t
t0

)−1∇x0
·
(
J t
t0D

[
Ct

t0

]−1∇x0
c
)
+

(
J t
t0

)−1∇x0
·
(
J t
t0

[
∇x0

Ft
t0

]−1
(v − vECM)c

)
. (S12)

2. If v = vECM, we recover (S8).

3. If cells move relative to a fixed ECM (e.g. ECM acting as a fixed substrate), (S12) reduces to

∂tc = Sc +
(
J t
t0

)−1∇x0
·
(
J t
t0D

[
Ct

t0

]−1∇x0
c
)
+

[
∇x0

Ft
t0

]−1
v · ∇x0

c. (S13)

4. If ECM flows relative to a static tissue, x0 = x and c = c̄ (S12) reduces to an ordinary advection-diffusion
equation:

∂tc̄(x, t) = S̄c −∇ · (v̄ECMc̄) +D∆c̄. (S14)
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S2 Characterization of Lagrangian deformations

In (S8), the diffusive flux depends on the tensor C (dependence on t0 < t and x0 as above). C can be diagonalized in its
eigenbasis as C = VΛV⊤ where Λ is a diagonal matrix containing the eigenvalues λ ≥ 1λ > 0 and V is a matrix whose
columns are the corresponding eigenvectors (ξ ⊥ 1ξ). In one dimension, we trivially have C = λ. In two dimensions,
eigenvalues and eigenvectors describe the local direction and magnitude of the highest and lowest Lagrangian strain
(Fig. S2A). Alternatively, one can decompose deformation into isotropic and anisotropic components (Fig. S2B)

C =

[
ξ1 1ξ1
ξ2 1ξ2

] [
λ 0
0 1λ

] [
ξ1 ξ2
1ξ1 1ξ2

]
= J

[
ξ1 1ξ1
ξ2 1ξ2

] [
R 0
0 1/R

] [
ξ1 ξ2
1ξ1 1ξ2

]
, (S15)

where R =
√
λ/1λ represents the deformation anisotropy (i.e., the deformed ellipse aspect ratio) and J =

√
λ1λ the

isotropic deformation (i.e. the ratio of the deformed and undeformed patch area). Note that in 3D, one can still
extract J =

√
det(C) (volumetric strain), but that there are instead multiple degrees of freedom for characterizing

the anisotropy of the deformation. For any time interval [t0, t], there may exist particular tissue patches x0 where

Ct
t0(x0) does not have distinct eigenvalues (in 2D: 1λ

t
t0(x0) = λt

t0(x0) =
√
detCt

t0(x0) ). These distinct locations

mark regions of purely isotropic deformations (Rt
t0(x0) = 1), sometimes referred to as Ct

t0 singularities [7] (Fig. S2B).

Fig. S2: Lagrangian deformation of a tissue patch. A) Lagrangian 2D tissue patch deformation quantified by Ct
t0

(x0). B) Alternative decomposition into

isotropic and anisotropic deformations. C) Attractors and repellers are computed using forward and backward time trajectories (see e.g., [8]). Deformations of

a tissue patch can be displayed at initial and final embryo configurations. They can be computed from forward and backward time analysis, are directly related

and computed from a single computation [9].

Finally, it is instructive to know whether a particular tissue patch x0 experienced only shrinking or stretching de-
formations. This information is readily available from the 1λ (least stretching in the direction 1ξ) and λ (greatest
stretching in the direction ξ). Regions where 1λ > 1 indicate that all directions stretched. Similarly, regions where
λ < 1 indicate that all directions shrank. In incompressible flows, these regions cannot exist as 1λ = 1/λ (J = 1 in
Fig. S2B).

S3 Quantitative criteria for dynamic tissue patterning

In practice, a developmental process starts at an initial time t0 and data is collected over a duration T of interest for
patterning. For example, in the problem of mesoderm induction during chick gastrulation (main text Fig.4), one can
set t0 = HH1 (a developmental stage) and T = 12h (the typical duration of gastrulation).

S3.1 Nondimensional parameter Ω1

Over [t0, t0 + T ], the largest finite-time Lyapunov exponent (in short, FTLE) is defined as

FTLE = Λt0+T
t0 (x0) =

log
√

λt0+T
t0 (x0)

T
, (S16)

where λt
t0(x0) is the largest eigenvalue of Ct

t0(x0). To understand its physical meaning, start with the linear, time-
independent convergent extension flow v̄ = α[−x, y], α > 0 (main text Eq. (4)). In time-independent flows, it is
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standard to set t0 = 0 as trajectories, C, FTLE etc., depend only on the time interval length T and not on the
specific initial time t0. For this flow Λt

0(x0) = α, meaning that any circular patch of diameter d0 will maximally
stretch along y into an ellipse with major diameter eαT d0. However, there is no simple connection between the FTLE
and the velocity strain rates for nonlinear and time-dependent flows. To gain intuition in these flows, without loss
of generality, fix t0 = 0 and focus on a single tissue patch labeled by its initial condition x0.

√
λT
0 (x0) quantifies

the maximum stretching of two points near x0 over the time interval [0, T ] (Fig. S2A). However, this cumulative
stretching is typically not simply a constant ∗ T but a complicated f(T ) (and initial time t0). Yet, it is instructive
to quantify the time-averaged stretching rate in the direction of maximum stretching for a tissue patch starting at
x0. The FTLE quantifies precisely this rate by implicitly supposing that the cumulative stretching

√
λT
0 (x0) was

achieved by an equivalent linear flow:
√

λT
0 (x0) = exp(FTLE · T ). Taking the logarithm of this relation gives (S16).

Therefore, for any x0 and time interval [t0, T ], Λ
t0+T
t0 (x0) quantifies the (time) average maximum stretching rate of a

tissue patch starting at x0, overcoming the complications caused by nonlinearities and temporal dependence of v̄(x, t)
to provide similar insights available for linear, time-independent velocities. To probe temporal heterogeneity, one can
always explore different t0 and T .

A related, useful question is when (i.e., at which t ∈ [0, T ]) and where (x0) will deformations become appreciable?
To gain intuition, we start again with the linear example above, where the maximum separation of the initially d0-close
nearby points obeys d(t) = d0e

Λt
0·t = d0e

α·t. For t << 1/Λt
0 (i.e. t << 1/α), d(t) ≈ d0. By contrast, for t >> 1/α

we have d(t) >> d0, meaning that there is a characteristic time t∗ = 1/Λt
0 = 1/α after which separation increases

appreciably. For nonlinear, time-dependent velocities, this characteristic time is called

Lyapunov time = 1/FTLE = 1/Λt0+T
t0 (x0) =

T

log
√

λt0+T
t0 (x0)

, (S17)

and is computable for any spatiotemporal flows from experimental tissue velocities [8] or sparse, noisy cell trajectories
[10]. Intuitively, the Lyapunov time can be thought of as a deformation time scale, revealing where and when
deformations in the tissue become appreciable. Putting together Eqs. (S16-S17), we define the nondimensional
parameter

Ω1 =
Time interval of interest

Deformation time scale
=

T

Lyapunov time
= Λt0+T

t0 (x0)T. (S18)

In practice, one can set i) t0 = 0 as the beginning of the experiment or the initial developmental stage for the problem
under study and ii) t = T , where T is the time interval of interest for patterning. For example, in the problem of
mesoderm induction during chick gastrulation (main text Fig. 4), one can set t0 = 0 = HH1 stage and T = 12h.
Then, one computes ΛT

0 (x0) from experimental velocities [8], from which (S18) reveals a spatial map (Fig. S4C) of the
tissue patches x0 where deformations are appreciable (Ω1 > 1, i.e. time scale of interest > deformation time scale).

For compressible flows, λ and 1λ can vary independently, meaning that the tissue could converge more in one
direction than it extends in the other direction, or even converge in every direction, so that the strongest deformation
is associated with convergence, not separation. In these cases, one should consider in (S17) and (S18) both the
forward time FTLE ((S16))—capturing maximum stretching and defining repellers—and the backward time FTLE

for the same patch: Λt0
t0+T (xt) = log

√
λt0+T
t0 (xt)/T—capturing maximum convergence and defining attractors—and

use whichever FTLE is larger, i.e., resulting in the smallest Lyapunov time. This ensures that the Lyapunov time
(and therefore Ω1) is always positive and accounts for the highest stretching or compressive deformation. Note that
the backward time FTLE can also be directly computed from the smallest eigenvalue 1λ

t0+T
t0 (x0) of the forward time

Ct0+T
t0 (Fig. S2C) and represents compression along 1ξ

t
t0(x0) (see Algorithm 1 for the precise formula).

Ensuring that deformations become appreciable during [t0, t0 + T ] guarantees that Ct0+T
t0 (x0) deviates from I,

implying Dt0+T
t0 (x0) deviates from DI (main text Eq. (3)), i.e. the equivalent diffusion tensor in the cell frame is

distinct from the standard Eulerian diffusion tensor. This constitutes condition i) in main text Table 1. See Fig. S4
for Ω1 in avian gastrulation flows and in the 1D SDD model used in Fig. 2J-K.

S3.2 Nondimensional parameter Ω2

Inspection of (S8) reveals that for diffusive fluxes in the cell frame to be affected by deformations, in addition to ensuring
Dt

t0(x0) ̸= D(x0, t)I (guaranteed by condition i): Ω1 > 1), ∇x0
c(x0, t) should remain nonzero until deformation effects

become appreciable. Generally, ∇x0
c(x0, t) depends on boundary conditions, source, sink, and reaction terms. Hence,
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we distinguish two cases. If there are mechanisms to sustain ∇x0c(x0, t) ̸= 0, then condition i) is the only one needed
for morphogenesis to affect patterning. This is the case, for example, in the SDD model discussed in the main text
Fig. 2 I-K. By contrast, if there are no mechanisms to sustain ∇x0

c(x0, t) ̸= 0—e.g. because a morphogen was locally
injected into a tissue—one needs to ensure that diffusion does not flatten gradients in the patterning region of interest
before deformations become appreciable, leading to the second nondimensional parameter

Ω2 =
Diffusion time scale

Deformation time scale
=

L2/D

Lyapunov time
= Λt0+T

t0 (x0)L
2/D, (S19)

where L is the size of the patterning region of interest, and D is a characteristic diffusivity. Here too, for compressible
flows one should use the larger of Λt0+T

t0 (x0) and Λt0
t0+T (xt) for each tissue patch (See Algorithm 1). Ω2 > 1 ensures

that before diffusion flattens ∇x0c(x0, t), deformations effect have become appreciable and affected cell-cell diffusive
fluxes. If diffusion is not the fastest mechanism to flatten ∇x0

c(x0, t), L
2/D should be replaced with the corresponding

time scale. For example, if degradation is faster than diffusion and there are no mechanisms to sustain gradients, it
will drive c(x0, t) → 0 and hence ∇x0

c(x0, t) = 0.

S3.2.1 Relation between Ω2 and the Péclet number

Ω2 is generally different from the classic Péclet number (Pe = |v|L/D), a ratio of advective and diffusive transport
rates. This is because, in the cell frame, advection is absent ((S7)), and its effect modulates diffusive flux due to tissue
deformations Ct

t0 . In fact, a spatially uniform velocity would have Pe = |v|L/D ̸= 0 but Ω2 = 0 because advective
transport in the Eulerian frame would be nonzero, but that would not affect cell-cell transport.

However, considering the alternative Péclet number Pe = |α|L2/D based on a strain rate (α), Ω2 = Pe in two
cases. First, in the case of time-independent velocities linear in space (e.g. v̄ = α[−x, y] in main text Eq. (4)). In
this idealized linear case, ΛT

0 (x0) = α (Sec. S3.1) meaning that knowledge of the stationary and spatially constant
velocity strain rate is sufficient to quantify cumulative tissue deformations over a finite time. Second, in the case of
nonlinear and time-dependent v, only in the instantaneous limit (i.e., infinitesimally short finite time interval):

lim
t→t0

Ω2 = lim
t→t0

Λt
t0(x0)

D/L2
= lim

t→t0

log
(
λt
t0(x0)

)
/(2|t− t0|)

D/L2
=

s2(x0, t0)

D/L2
= Pe, (S20)

where we used that for small t−t0, Λ
t
t0(x0) corresponds to the instantaneous, local maximum strain rate s2(x0, t0) [11],

which is the largest eigenvalue of the tissue velocity rate-of-strain tensor S(x0, t0) = 0.5([∇v(x0, t0)]
⊤ +∇v(x0, t0)).

Intuitively, at the initial time t0, the tissue is undeformed, and a tissue patch will initially start deforming maximally
with the highest stretching rate s2(x0, t0) along the local stretching direction associated with the dominant eigenvector
of S(x0, t0), as shown in (S10). However, the general spatiotemporal features of v(x0, t) will induce finite-time
deformations of tissue patches that cannot be related to instantaneous velocity features but are precisely captured
by Λt

t0(x0) and hence Ω1 and Ω2. In summary, Ω1 and Ω2 capture the effects of finite-time tissue deformations on
patterning in general nonlinear morphogenetic processes and are computable from experimental data of tissue velocities
[8] or single cell tracks [10]. These numbers reveal that patterning in dynamic tissues is intimately tied to cumulative
tissue deformations instead of the classic Péclet number—relevant for static tissue patterning. For an algorithmic
procedure to verify Ω1 > 1, Ω2 > 1, see Algorithm 1.

S4 Embryological Light Cones

The idea of light cones in pattern-forming systems has been explored in simple 2D cellular automata [13, 14]. The
notion of a light cone enabled quantifying the degree of self-organization (distinguishing self-organized complexity from
spurious order or randomness) because it accounts for non-cell-autonomous causal influences and their time-dependent
spatial extents. In these models, material points do not move and their light cones are defined by a constant, uniform
propagation speed (e.g., c in the cosmological case). In the embryological case, information propagation rates can be
non-uniform, non-constant, and anisotropic.

For a cell labeled x∗
0, we define its past cone ELC

t−
t0 (x∗

0) (t− < t0) and future cone ELC
t+
t0 (x

∗
0) (t+ > t0) as re-

gions that can affect the cell’s state, and regions that the cell can affect, over a specified time interval and through
some specified signal propagation mechanism. ELCs must be examined in Lagrangian coordinates (i.e., x0 or xt) as
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Algorithm 1 Procedure to verify if morphogenesis mediates morphogen transport (main text, Table 1)

1. Identify the earliest time t = t0 and latest time t = tend for your process of interest. This will typically be
determined by the temporal range of your data.

2. Fix t0, defining the initial domain x0 ∈ X0 (X0 represents the initial undeformed configuration).

3. Compute the trajectory map Ft
t0(x0) (cell trajectories) for increasing t up to tend:

(a) If you have velocities: Ft
t0(x0) = x0 +

∫ t

t0
v(Fτ

t0(x0), τ) dτ . This can be computed using in-built functions

of standard software (MATLAB, Python etc.) by interpolating v(x, t) in space and numerically integrating
along trajectories. Discard any trajectories that leave the domain on which your velocity v is defined.

(b) If you already have cell trajectories (xt,t) for t ∈ [t0, tend], this is already Ft
t0(x0).

(c) Compute Ctend
t0 (x0) = ∇x0F

tend
t0 (x0)

⊤∇x0F
tend
t0 (x0) where ∇x0F

tend
t0 (x0) can be computed by taking spatial

derivatives of Ftend
t0 (x0) over the initial domain X0 (see e.g. [8]).

(d) Compute the largest (smallest) eigenvalue λtend
t0 (x0) (1λ

tend
t0 (x0)) ofC

tend
t0 (x0). A Python package to compute

λtend
t0 (x0) and Ctend

t0 (x0) from cell trajectories is available in [10].

(e) Compute Lyapunov time (i.e. deformation time scale): Tdef=
tend−t0

max

(
log

√
λ
tend
t0

(x0),− log
√

1λ
tend
t0

(x0)

) .

4. Compute Ω1: Ω1(x0) = max

(
log

√
λtend
t0 (x0),− log

√
1λ

tend
t0 (x0)

)
.

5. If Ω1(x0) ≥ 1 for some x0 ∈ X0, this implies that these tissue patches experienced significant deformations
during [t0, tend], that can affect patterning. See, for example, Fig. S4C.

6. If Ω1(x0) < 1 for all trajectories, cell motion may still be important if deformation does not increase monotoni-
cally through time. In this case, repeat steps 1-5 for intermediate t. If still Ω1(x0) < 1, morphogenesis can be
neglected in patterning.

7. Compute Ω2:

(a) Select the characteristic length-scale L of your patterning region of interest.

(b) Compute Ω2(x0) = L2/D
Tdef

, using the approximate effective diffusivity D of your morphogen of interest.

Ranges of D can be estimated from the literature [12] or measured experimentally. As for the condition
one above (Ω1(x0) > 1), Ω2(x0) > 1 provides a spatial map locating tissue patches where condition two is
satisfied.

(c) If gradients are not sustained and diffusion is not the fastest mechanism to eliminate gradients, replace L2/D
accordingly. For example, if a production relay is known to operate in the region of interest, morphogen

activity may equilibrate faster than via ordinary diffusive spreading. Compute Ω2(x0) =
L/w
Tdef

where w is

an estimated speed of the traveling wave for your morphogen of interest.

8. If there are known mechanisms to sustain gradients, Ω1(x0) > 1 is required for morphogenesis to affect patterning.

9. If there are no known mechanisms to sustain gradients, Ω1(x0) > 1 and Ω2(x0) > 1 are both required for
morphogenesis to affect patterning.
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they label sets of cells, facilitating comparisons with fate maps and specification maps. Affecting a cell can be formal-
ized in various ways and depends on what type of information the cell responds to, e.g., integrated exposure, rate of
change of exposure, or a simple threshold. Additionally, this threshold might be heterogeneous or dynamic, taking a
cell’s competency to respond to signals into account [15]. For simplicity, we consider a low exposure threshold cmin—a
necessary condition for any signal-sensing. Choices for a signaling threshold will affect ELC extents and are both
necessary—because a diffusing c(x0, t) is a continuous field that becomes nonzero everywhere after a finite time—and
biologically important as signaling quantities (e.g. molecules) are discrete and perceptual thresholds are finite.

For simple static tissue patterning (x = x0), some ELCs can be derived analytically in 1D or 2D. Consider a fixed
diffusivity D and the following common scenarios where a cell at x∗

0 = 0 emits a signal onto a semi-infinite domain
for all t ≥ t0 = 0:

1. Synthesis and diffusion (1D): ∂tc = D∆c, with flux Q from the boundary has analytical solution c(x0, t) =
Q
2D

(
1− erf

(
x0

2
√
Dt

))
, and therefore ELCt

0(0) = {x0 ∈ R | |x0| <
√
Dt erf−1(1 − 2Dcmin/Q))}, expanding sub-

linearly. For visualization of simulated 2D examples, see main text Fig. 3A left and Fig. S5A.

2. Synthesis, diffusion, and degradation (1D): ∂tc = D∆c − kc, with flux Q from the boundary has an-

alytical steady state c(x0, t > k−1) = Q√
Dk

exp

(
− x0√

D/k

)
, and therefore ELCt

0(0) = {x0 ∈ R | |x0| <√
D/k log

(
Q/(

√
Dkcmin)

)
} for all t > k−1, the approximate time for steady state formation when k > D/L2

(i.e. with significant degradation), expanding up to a fixed radius. For visualization of simulated 2D examples,
see main text Fig. 3A right and Fig. S5C.

3. Production relay (1D): ∂tc = D∆c+ βc(cmax − c), with positive feedback parameter β, results in a traveling
wave with speed w = 2

√
βDcmax [16] away from the initial source at x∗0. If there is bistability with an activation

threshold (e.g. a trigger wave [17, 18]), so that a finite amount of morphogen is needed to trigger positive
feedback, we have ∂tc = D∆c + βc(cmax − c)(c − a) with activation threshold 0 < a < cmax/2, and the wave
speed becomes w = (cmax − 2a)

√
βD/2 [19]. In both cases, once the front has stabilized (t >> (βcmax)

−1)
we can approximate ELCt

0(0) ≈ {x0 ∈ R | |x0| < wt}, expanding linearly. For visualization of simulated 2D
examples, see main text Fig. 3A middle and Fig. S5B.

Estimating a past cone ELC
t−
t0 (x∗

0) requires determining the set of points x− for which a given x∗
0 lies in their future

light cone ELCt0
t−(x−). Unlike rewinding tissue patch trajectories Ft

t0(x0) (a reversible mapping), one cannot simply
run a diffusive process in reverse. For static patterning schemes, the past cone will always be the mirror image of
the future cone because communication solely depends on the time duration (T ) and the (fixed) distance between the
sender and receiver (PDE for c(x0, t) is autonomous). In dynamic tissues, time-symmetry is broken by the explicit
time-dependence of cell-cell separation (PDE for c(x0, t) becomes non-autonomous). For these cases, simulations
will generally be required to determine ELCs. But, as we have emphasized, whether tissue deformation causes ELC
expansion to accelerate, decelerate, or become anisotropically directed can be qualitatively understood from Ct

t0(x0)
and the Dynamic Morphoskeleton (see main text Fig. 4), without solving advection-reaction-diffusion equations or
measuring patterning parameters (e.g. D, k, β) experimentally. Finally, ELCs can be adapted to any information
propagation mechanisms. For example, if cell fates respond to mechanical signals via mechanotransduction, one might
consider mechanical information propagated via elastic stress-strain relationships and estimate their speed limits [20]
from tissue mechanics.

S5 Per-cell morphogen exposure in the Lagrangian frame

To derive per-cell morphogen exposure (# morphogens/cell) in the Lagrangian frame, we account for cell density
dynamics, i.e., the number of cells packed into each tissue patch over time. We consider a 2D cell monolayer as a
continuum composed of cells as mass carriers. From standard mass transport, a continuum with density ρ̄(x, t) (mass
per unit area) obeys the continuity equation

∂tρ̄+∇ · (ρ̄v) = S̄ρ, (S21)
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where S̄ρ(x, t) models sources or sinks of mass (mass rate per unit area). To connect this to the cell number density
(n̄=# cells per unit area), we assume that cells have, on average, a fixed mass mcell, or, equivalently, a fixed average
volume and physiological density. Then, we have that ρ̄ = n̄mcell, which substituted into (S21) yields a standard
continuity equation for cell number density [21, 22]:

∂tn̄+∇ · (n̄v) = n̄(k̄d − k̄e), (S22)

where k̄d (k̄e) represents division (extrusion) rates per cell. Following the approach in Sec. S1, (S22) can be written
in Lagrangian coordinates as

dtn(x0, t) = ∂tn(x0, t) = n(x0, t)[kd(x0, t)− ke(x0, t)−∇ · v(x0, t)]. (S23)

Next, we define the number of morphogens per cell q = c/n, i.e. the allocation of morphogen exposure to cells
occupying the same tissue patch (c and n both defined per unit area). Using (S23) and substituting c = nq into (S8)
gives

∂tq =
1

nJ t
t0

∇x0 ·
(
J t
t0D

[
Ct

t0

]−1
[n∇x0q + q∇x0n]

)
− q[kd − ke] + Sq, (S24)

where Sq = Sc/n is the per-cell rate of morphogen production and removal. For example, if each cell produces
morphogens at rate kp(x0, t) and irreversibly removes morphogens at rate kr(x0, t) (reviewed in [23]), then Sq(x0, t) =
kp(x0, t)− kr(x0, t)q(x0, t). It is instructive to rewrite (S24) to represent changes in n due to changes to i) patch area
A and ii) cell number N . By substituting n(x0, t) = N(x0, t)/A(x0, t) = N(x0, t)/(A(x0, t0)J

t
t0(x0)) into (S24), we

obtain

∂tq(x0, t) =

non-cell-autonomous︷ ︸︸ ︷
N−1∇x0

· (D
[
Ct

t0

]−1
[ N∇x0

q︸ ︷︷ ︸
per-cell morph.

gradients

+ q∇x0
N︸ ︷︷ ︸

cell-number
gradients

− qN∇x0
log J t

t0︸ ︷︷ ︸
isotr. deform.

gradients

]) − q(kd − ke)︸ ︷︷ ︸
dilution &

redistribution

+ kp − krq︸ ︷︷ ︸
source &

degradation

+ . . . .

(S25)

The cell number N(x0, t) = N(x0, t0) exp
(∫ t

t0
[kd(x0, τ)− ke(x0, τ)]dτ

)
tracks the total number of cells along a patch’s

trajectory, without considering how the patch area changes, which is instead tracked by J t
t0(x0) = A(x0, t)/A(x0, t0),

where A(x0, t0) is uniform, describing the initial area of undeformed tissue patches. (S25) elucidates separate effects
of cell number dynamics and tissue deformations on the per-cell allocation of morphogen exposure.

S5.1 Simplifications with incompressibility or mass conservation

One can simplify (S25) if tissue flows are incompressible or if the total number of cells (i.e., mass) is conserved. Here
we neglect production (kp) and removal (kr) terms for brevity, as they are unaffected. If the tissue is incompressible
(∇ · v = 0, J t

t0 = 1), then N and n are interchangeable and (S25) reduces to

∂tq = N−1∇x0 ·
(
D
[
Ct

t0

]−1
[N∇x0q + q∇x0N ]

)
− q(kd − ke). (S26)

If, instead, cells numbers are conserved, N(x0, t) = N(x0, t0) is constant in time. If N(x0, t0) is also uniform in space
(i.e., initial undeformed tissue patches have uniform number of cells), (S25) reduces to

∂tq = ∇x0 ·
(
D
[
Ct

t0

]−1[∇x0q −∇x0 log J
t
t0

])
. (S27)

Finally, if we have both cell number conservation and incompressibility—n(x0, t) = n(x0, t0), N(x0, t) = N(x0, t0),
kd = ke–then q ∝ c and (S25) becomes

∂tq = ∇x0
·
(
D
[
Ct

t0

]−1∇x0
q
)
. (S28)

Note that (S24) and (S25) also extend to 3D tissues where 3D tissue volume elements replace 2D tissue patches. In
3D, q carries the same meaning, but c and n are defined per-unit-volume, N is the number of cells in volume element

9



moving with cells, and J t
t0(x0) = V (x0, t)/V (x0, t0) is a volume ratio. In 3D, confluent tissues, cells may die and

divide, but ∂tρ = ∂tn = 0 as cells are effectively incompressible. In this case, (S25) becomes

∂tq =
1

J t
t0

∇x0 ·
(
J t
t0D

[
Ct

t0

]−1∇x0q
)
− q(kd − ke). (S29)

and q and c become interchangeable. (S29) recovers, as a simple example, the dynamics of existing 1D growth-
dilution models [24, 25, 26, 27], which include a morphogen dilution term −c∇ · v associated with tissue growth (i.e.
∇ · v = kd, ke = 0, conserving n). (S25) instead applies to general 2D flows, where proliferation can occur under
confinement or tissue stretching, and with any anisotropic tissue deformation.

S5.2 ELCs for dynamic tissue patterning

When cell number density dynamics are known, describing ELCs with q = c/n instead of c better represents the signal
a cell can sense. Consider the following simple dynamic tissue patterning scenarios on a semi-infinite 1D domain,
assuming kd = ke, uniform initial cell density, and uniform deformation (i.e. (S28)), and x∗0 = 0, t0 = 0:

1. Shrinking Tissue (1D): v = −αx, α > 0, ∂tq(x0, t) = De2αt∆q, with fixed q0 at the x∗0 = 0 boundary has ana-

lytical solution q(x0, t) = q0erfc

(
x0

√
α/2D
e2αt−1

)
, and therefore ELCt

0(0) = {x0 ∈ R | |x0| <
√

2D
α [e2αt − 1]erfc−1

(
qmin

q0

)
},

expanding at an increasing rate that becomes superlinear.

2. Expanding Tissue (1D): v = αx, α > 0, ∂tq(x0, t) = De−2αt∆q, with fixed q0 at the x
∗
0 = 0 boundary has ana-

lytical solution q(x0, t) = q0erfc

(
x
√

α/2D
1−e−2αt

)
, and therefore ELCt

0(0) = {x0 ∈ R | |x0| <
√

2D
α [1− e−2αt]erfc−1

(
qmin

q0

)
},

expanding at a decreasing rate and approaching a fixed radius beyond which growth outpaces diffusion.

This 1D analysis is consistent with the simulated expansion of ELCs in 2D shrinking and expanding tissues (cf. Fig.
3).
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Additional Supplementary Figures

Fig. S3: Connections between Lagrangian and Eulerian quantities. A) Chick Gastrulation velocities v(x, t) from t0 = 0h (HH1) to 12h (HH3) used in

Fig. 4 with a 52 µm spatial and 15 minute moving average filter. Velocity plots fail to locate regions of convergence and separation in time-dependent flows.

For example, at the Primitive Streak (red rectangle), the tissue exhibits high convergence without an obvious signature in v. Instead, the frame invariant

rate-of-strain tensor should be considered to locate local (in space and time) regions of convergence or separation [6, 11]. B) s1(x, t) field and directions (black

bars) show the smallest eigenvalue (eigenvector) of the rate of strain tensor S(x, t) = 1/2(∇v(x, t) + [∇v(x, t)]⊤), showing the orientation and intensity of

maximal local contraction rates, marking a short-time attractor at the Primitive Streak [28]. C) Same as B for local separation. Maximal separation rates are

quantified by the largest eigenvalue s2(x, t) of S(x, t) along its eigenvector (black bars). C shows no sign of repellers in instantaneous fields. The (Eulerian)

S(x, t) is frame invariant yet agnostic to cell paths. Movie 6 shows that additional time-averaging at these Eulerian (fixed) positions does not reveal distinct

structures. Tissue patches, instead, move and integrate deformations along their trajectories (D), visualized by a deforming Lagrangian grid (E). The Dynamic

Morphoskeleton (DM), composed of attractors (F) and repellers (G), precisely accounts for this cumulative deformation over a finite time. F) Largest contraction

ratio λ
t0
t (xt) and orientation (white bar) along cell trajectories. G) Largest separation ratio λt

t0
(x0) and expanding direction (white bar) along cell trajectories.

Comparing E-G with B-C shows robust morphogenetic features that develop over time (Lagrangian) and are not contained in Eulerian fields.
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https://www.dropbox.com/scl/fi/ldtv7dxypev0dejwh08pq/Movie-6.mp4?rlkey=a4zyoyr7b5cdl59ip4sotp4es&st=tndnxpy4&dl=0


Fig. S4: Non-dimensional Parameter Ω1. A-B) Same as main text Fig. 3J-K for different values of Ω1. Black curve marks SDD static tissue patterning (v =

0), while purple curves mark the concentration profiles c(x0, t) for dynamic tissue patterning (v ̸= 0) with increasing deformation rates. For Ω1 > 1, deformations

affect morphogen exposure dynamics. A) Velocity field v(x) = α(x − L/2) exp
[
−(x − L/2)2/(2(0.15)2)

]
. B) Velocity field v(x) = −αx exp

[
−x2/(2(0.25)2)

]
.

Both A and B have the largest Ω1 = αT ((S18)) on the Dynamic Morphoskeleton (attractor (A) and repeller (B) marked in red). All simulations use diffusivity

D = 0.001, degradation rate k = 0.01, time T = 100, and domain size L = 1 with fixed c(0) on the left boundary (arbitrary units) and no flux on the right

boundary. C) Ω1(x0) ((S18)) from avian gastrulation experimental data discussed in main text Fig. 4, with Λ(x0) taken as the largest of the forward and

backward time FTLEs, corresponding to the smallest Lyapunov time (See Formula in Algorithm 1).

Fig. S5: Embryological Light Cones in Avian Gastrulation. Same as ELCs in main text Fig. 4 with alternative signaling mechanisms and parameters

in static (top row, v = 0) and dynamic (bottom rows) using chick gastrulation velocities. Sources are as in main text Fig. 4. Final contour is shown at

T = 12h. All parameters are in µm and min. Concentration units are arbitrary with a secretion rate of 100min−1. A) Synthesis Diffusion (as in the main

text Fig. 4), illustrating sub-linear static expansion and reduced ranges as diffusion decreases. B) Production relay, as in A, but with the addition of a logistic

growth term (+βc(cmax − c), cmax = 100). ELCs expand linearly with positive feedback, increasing interaction ranges, even at low diffusivity. C) SDD

(Synthesis-Degradation-Diffusion) model, as described in the main text Fig. 2, but with moving point sources (as in A) and a secretion rate replacing the

fixed flux boundary condition. ELCs approach a fixed range in the static case (top) but can continue expanding in the dynamic case due to convergent tissue

deformation. In all cases, ELCs are augmented by deformation in robust, predictable ways as long as D > 0. Overall, dynamic tissues affect cell-cell interaction

ranges, with all of the important qualitative features of ELCs’ distortion predictable from C.
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Movies

Movie 1: Time evolution associated with Fig. 1C.
Movie 2: Time evolution associated with Fig. 2E-H.
Movie 3: Time evolution associated with Fig. 2I-K.
Movie 4: Deformation of randomly colored tissue patches in avian gastrulation. Same velocity data as Fig. 4.
Movie 5: Time evolution associated with Fig. 4A-G. ELCt

0h camera angle rotates to provide a view from all angles.
Movie 6: Time evolution associated with Fig. S3B-C for increasing temporal averaging.
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