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Abstract
There have been a number of pharmaceutical and non-pharmaceutical interventions associated
with COVID-19 over the past two years. Various non-pharmaceutical interventions were proposed
and implemented to control the spread of the COVID-19 pandemic. Most common of these were
partial and complete lockdowns that were used in an attempt to minimize the costs associated with
mortality, economic losses and social factors, while being subject to constraints such as finite
hospital capacity. Here, we use a minimal model posed in terms of optimal control theory to
understand the costs and benefits of such strategies. This allows us to determine top-down policies
for how to restrict social contact rates given an age-structured model for the dynamics of the
disease. Depending on the relative weights allocated to mortality and socioeconomic losses, we see
that the optimal strategies range from long-term social-distancing only for the most vulnerable,
partial lockdown to ensure not over-running hospitals, and alternating-shifts, all of which lead to
significant reduction in mortality and/or socioeconomic losses. Crucially, commonly used
strategies that involve long periods of broad lockdown are almost never optimal, as they are highly
unstable to reopening and entail high socioeconomic costs. Using parameter estimates from data
available for Germany and the USA early in the pandemic, we quantify these policies and use
sensitivity analysis in the relevant model parameters and initial conditions to determine the range
of robustness of our policies. Finally we also discuss how bottom-up behavioral changes affect the
dynamics of the pandemic and show how they can work in tandem with top-down control policies
to mitigate pandemic costs even more effectively.

1. Introduction

As of April 2022, the virus SARS-CoV-2 has infected
more than 350 million people and been responsible
for more than 15 million deaths globally, devas-
tating communities, economies and societies. Until
the deployment of vaccines to combat the COVID-
19 disease, the primary approach to mitigate these
losses has been to minimize the rate of spread of
the infection—transmitted primarily via the respira-
tory tract—by controlling social interactions. At an
extreme, this has led to multiple cycles of complete or
near-complete lock-down of entire societies, reducing
social contacts to a minimum required for essential

services. While this strategy reduces the infection rate
dramatically [1], it is unsustainable over longer terms
owing to the considerable economic and social losses
that it eventually entails—from loss of productivity
to the collapse of vulnerable communities, visible
around the world. This raises the natural question:
how can one run a viable society limiting the mor-
tality, social and economic costs of the pandemic,
while maintaining essential services and constrained
by finite resources such as hospital capacity?

Mathematical models of the pandemic and its
control by limiting social interactions and/or chang-
ing individual and collective behavior can help us
understand the range of plausible scenarios and

© 2022 IOP Publishing Ltd

https://doi.org/10.1088/1478-3975/ac7e9e
https://orcid.org/0000-0002-6007-5878
https://orcid.org/0000-0002-6988-2991
https://orcid.org/0000-0002-1674-0180
https://orcid.org/0000-0002-5114-0519
mailto:lmahadev@g.harvard.edu


Phys. Biol. 19 (2022) 055001 M Serra et al

interventions [2]. Naturally, any model and the strate-
gies that it suggests are only as good as the assump-
tions that it is based on and the data that feed into
it. Here, we approach this question with the aim of
using a set of minimal models grounded in data to
provide qualitative scenarios for policies that mitigate
the costs of the pandemic. We present our work in
a semi-tutorial fashion that combines epidemiology,
data analysis and control theory toward sharpening
the question of how to compare different policies
during an emerging pandemic. To further broaden
the reach of our work, we created an interactive
version of our code that can be accessed through the
link provided in the data accessibility section below.

The dynamics of epidemics has been the subject of
mathematical study for more than a century since the
pioneering work of Ross, Kermack and McKendrick
[3, 4]. The theoretical framework for the evolution
of epidemics takes the form of either deterministic or
stochastic integro-differential equations for the rates
at which a population of susceptible (S), infected
(I) and recovered (R) individuals vary in space-time
[5–9]; the simplest form of these models is the well
known SIR model [10]. Using this model and its
variants, optimal strategies for containment of an
epidemic in the form of vaccination and/or isola-
tion while discounting future costs and allowing for
stochastic effects [11–15] have been studied for nearly
fifty years. In the context of the current pandemic,
this thread has been revived to determine a range of
non-pharmaceutical interventions (NPIs) in different
minimal scenarios [16] inspired by optimal control
theory [17–22].

We contribute to this thread by considering opti-
mal control policies in the context of differential
susceptibility and mobility (e.g., due to vaccine sta-
tus or age) and incorporate the constraints of finite
hospital capacity in the dynamics. In addition, after
showing that batching strategies—where people par-
ticipate economically in separate shifts—are highly
efficient at suppressing infections and deaths, we con-
sider optimal control in this context and account for
feedback between behavioral changes and reported
infection rates.

In order to help generate efficient NPIs, a model
needs account for (i) the differential vulnerability of
populations as a function of age [9] that also accounts
for their differences in social contact rates [9], (ii)
the costs due to morbidity, mortality and healthcare
(life) costs as well due to socioeconomic factors driven
by distancing measures, (iii) constraints due to finite
resources e.g. hospital beds and intensive care units
(ICU) capacity, (iv) the possibility of batching strate-
gies, where people participate economically in sepa-
rate shifts and (v) the behavioral dynamics of people
driven by knowledge of infections. Here, we extend
the classical SIR epidemiological model to account for
these features and pose and solve an optimal control
problem to generate policies for mitigating pandemic

costs as a function of the relative weights associ-
ated with health and socioeconomic costs. Owing to
its simplicity, our minimal model does not directly
account for latency and pre-symptomatic infectious-
ness (see e.g. [23]). The main reason for this is
that pre-symptomatic data is typically inaccessible
at the early stage of a pandemic, and difficult to
estimate without large-scale testing. Similarly, we do
not account for immune escape and the emergence
of new strains in a partially vaccinated world to keep
the model simple. Taking the long view, our model
is likely to remain relevant for any pandemic given
its dependence on a small number of parameters that
can be estimated. Our results provide insights to the
following question: in an emerging pandemic, where
vaccines and other effective pharmaceutical interven-
tions might not be immediately available, what is
an effective response that balances health safety and
socio-economic costs?

In section 2 we present a simple deterministic
mathematical model for the spread of the pandemic
along with an optimal control-based framework for
the reduction of social contacts subject to constraints.
We then estimate the parameters in the model using
COVID-19 data in the US and Germany. Section 3
presents numerical results for the solution of the opti-
mal control problem along with a sensitivity analysis,
and includes the effect of batching strategies, where
people are exposed to the virus in alternating shifts.
We also consider the effect of human behavior on the
optimal policies using a simple model. We conclude
in section 4.

2. Mathematical framework

2.1. Optimal open-loop control in the SIR model
with differential mobility and susceptibility
Rather than using sophisticated spatio-temporal
models that account for multiple compartments,
stochasticity etc but require multiple parameters (that
still remain difficult to estimate from data), we modify
the simple but effective SIR model to capture the
essential features of the pandemic (see appendix for
an extension of our model to include a fourth com-
partment corresponding to the ‘exposed’ individuals;
our qualitative results are robust to this change)
(figure 1).

Our SIR model is assumed to have two epidemio-
logical compartments i = y, o (y < 60 years; o > 60)
to account for the differential vulnerability, contact
structure, infection and recovery rates in these sub-
groups. These compartments may also be used to
describe differential behaviors between other groups,
for example, based on vaccination status and comor-
bidities. Denoting by Si(t), the number of suscepti-
ble people in the age group labeled by i, Ii(t), the
corresponding number of infected, and Ri(t), the
number of recovered, the dynamical equations for

2
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Figure 1. Schematic of the two-age SIR model. Si is the susceptible population, Ii the infected population and Ri the recovered
with i = Young, Old. The controller u(t) affects the dynamics of infected through Cij, the contact matrix (equation (2)). The right
panels illustrate how u(t) modulates the time evolution of infections in the young (solid line) and old (dashed line) populations
differently, optimally accounting for their intrinsic dynamics.

their evolution is given by [24]:

Ṡi =− φ
∑
j=y,o

Si Cij
Ij

Nj
,

İi = φ
∑
j=y,o

Si Cij
Ij

Nj
− γ Ii,

Ṙi = γ Ii,

(1)

where Cij represents the number of contacts a sin-
gle person of age i makes with people from age j
(per day), φ corresponds to the nominal rate of
infection from contacts and γ is the nominal recovery
rate, Ni is the population of age group i and we define
the total population as N = No + Ny, subject to the
constraint NyCyo = NoCoy since both expressions give
the total number of contacts between the two age
groups.

We assume that the main control measure avail-
able to policy makers is to enforce a reduction of
the contact rate between individuals in different age
groups. Then, if we take the contact matrix to be

Cij = C0
ij − u(t) CC

ij , (2)

where C0
ij represents the nominal contact matrix

between people in the absence of control measures,
and CC

ij encodes the relative change in contact struc-
ture imposed by the control function u(t) that char-
acterizes the magnitude of the lock-down. In our
minimal framework, we assume that u is a scalar
time-dependent function, so that an age-structured
social-distancing policy enters through the form of
CC

ij , which we choose so as to reduce contacts with the
older, more vulnerable population more strongly (see
appendix for details).

To determine the strategy u(t), we need to define
an objective cost function that must be minimized,
and accounts for a mortality cost in terms of the

proliferation of infections, a measure of economic
cost (loss), and a social cost associated with the
burdens due to social distancing measures. We further
require that the total number of people in critical
condition (defined as a weighted fraction of those
infected) is below the finite number of available hos-
pital beds/ICUs. Then, we may write the optimal con-
trol problem for the control u(t) formally as follows:

arg min
u

∫ T

0

G(x,u,t)︷ ︸︸ ︷
(Gmort + Gecon + Gsocial ) dt,

Gmort = αM

(
py Iy(t) + po Io(t)

NICU

)

Gecon = αE

(
1 − N − Iy(t) − Io(t)

N
(1 − u(t))

)

Gsocial = αS

(
u(t)

uM

)2

,

(3a)

subject to the SIR model (1) and the constraints:

IC(t) ≡ py Iy(t) + po Io(t)

NICU
� 1,

0 � u � uM.

(3b)

Here, the first term Gmort is the mortality cost
associated with the expected fraction of people need-
ing ICUs (relative to the total number of available
ICUs (NICU)), where the parameters py (po ) are the
(known) probabilities that an infected young (old)
person will need an ICU. The quantity IC(t) gives an
upper bound on the number of occupied ICUs at any
one time, because the duration of the ICU stay is
typically smaller than the duration of the illness.

The second term Gecon is the economic cost asso-
ciated with the loss in production capacity due to a

3
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reduction in the number of productive individuals.
While it is possible to use more complex forms, e.g.
the Cobb–Douglas function [25], this increases the
number of parameters that we have to fit, and so we
have chosen to use a simple linear form (see appendix
for the results using a nonlinear Cobb–Douglas func-
tion with the same qualitative trends). The quantity
(1 − u(t)) represents the fraction of people allowed
to work5 which is multiplied by the fraction of pro-
ductive individuals (not infected). Finally, the social
cost Gsocial grows with social distancing and becomes
larger with u(t) relative to the maximum lock-down
uM which defines the minimum residual contact rate
between individuals possible, e.g. due to families
(which can vary across cultures and societies [26]);
we use a simple quadratic form to strongly penalize
increase in u(t) (see the appendix for an exponential
functional form which produces similar results to
those presented here).

The integrand to be minimized has three nor-
malized costs with αM, αE and αS being the rela-
tive weights associated with mortality, economic and
social costs. A complete derivation of the nonlinear
differential equations associated with the optimal
control problem obtained by the minimization of the
constrained functional given in equations (3a) and
(3b) is given in the appendix. There are a number
of parameters in our problem, most of which can
be estimated from data. From the perspective of the
policy, there is freedom to vary the relative weights of
mortality, economic and social costs αM,αE,αS, and
the desired nature of the contact structure imposed
by the lock-down CC

ij . Once these are chosen, the gov-
erning differential equations associated with optimal
control (see appendix) were solved using the Open
Optimal Control Library (Open OCL) [27], which
uses the nonlinear optimization tool CasADi [28], via
the MATLAB interface.

2.2. Parameter estimation
From the perspective of optimal control theory, our
aim is to estimate system parameters in absence of
control measures, and then let the policy modulate the
effective social contact structures within a given time
horizon. We explore the different controlled scenarios
for optimal early intervention (∼1 year) rather than
focus on the long-term effects of control policies.
Our reasons for this are associated with the lack of
fine-grained and accurate data that would allow for
reliable long-term predictions and the emergence of
other (pharmaceutical) interventions, true for this
pandemic, but also likely true in general. This is
to be contrasted with long-time controllers that use
terminal costs [29] or free time horizons [30].

5 When the young and old populations are quarantined in different
proportions, the expression for the fraction of people allowed to
work would be slightly different (see appendix). Since this detail
does not change the nature of our results, the simpler expression
given here suffices.

The two nominal time scales in the problem are
the infection and recovery rates φ, γ respectively,
which we extract from publicly available data (see
appendix for details). In addition, we need to extract
the following quantities from data for solving the
above control problem: the nominal contact matrix
C0

ij, its leading eigenvalue c0, the total number of
people in each age-group Nj, the initial number of
infected and recovered individuals Ii(0), Ri(0), the
probability of old and young people needing critical
care po, py, the limits on the number of ICUs (NICU)
and the maximum value of the control uM.

Our parameter estimates focused on Germany
because there are publicly available age-structured
datasets over a sufficiently long duration before and
after the onset of lock-down [31]. The data used for
estimating the growth rate of the infected popula-
tion is the time series of confirmed infected cases
in Germany that captures the total of all currently
active infections as well as recovered individuals,
I(t) + R(t). From this data set we extract the growth
rate of the number of active infections in the early
exponential growth phase. This quantity, given as
ρ = φc0 − γ, is related to the doubling time through
Tdoubling = log(2)/ρ. For the German data, we find
that the doubling time is about 3.5 days, i.e. ρ= 0.2 ±
0.03. In order to estimate the basic reproduction
number R0 = φ c0/γ [32], we use its relation to the
growth rate and the serial interval, the mean duration
from the onset of symptoms of an infector to the
onset in a person they infected, to get R0 ≈ 2.2 (see
appendix for details). Using these values we find φ =

0.036 and γ = 0.16.
The German dataset also shows that the ratio

between the young and old infected populations is
approximately constant and is given by Iy/Io = 3.8.
This ratio reflects the dominant eigenvalue of the
contact matrix and its left eigenvector (see appendix
for details). We use this ratio, along with the con-
straint N1C12 = N2C21, to estimate the contact matrix
given in the appendix. When assessing the different
control measures (results section), we will need the
infection fatality rate (IFR) for the two age groups.
Following the Centers for Disease Control and Pre-
vention (CDC) data [33], we estimate the IFRs to
be 0.001 and 0.02 for the young and old popula-
tions. From [33], we also find that py = 0.0076 and
po = 0.031. These estimates were adjusted to account
for an asymptomatic ratio of 35% (see appendix for
details). Finally, ICU capacity estimates are taken
from [34]. For Germany NICU = 34 × 10−5N while
for the US NICU = 26 × 10−5N. To account for uncer-
tainties and the under reporting of cases, we include a
safety factor in these estimates and design our control
policy using the expression 0.8∗NICU � pyIy + poIo.
Our overestimation of IC, as described above, jus-
tifies our large safety factor, whose precise choice
is typically country-specific and can vary over time
depending on available resources to mitigate a
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pandemic. By comparing the growth rate (of the
infected population) in the phase before shelter in
place to the phase afterward in Germany, we find
uM = 0.85.6 When choosing CC we assume that, when
a fraction u of the young population is in lockdown,
a (bigger) fraction u/uM of the old population is
(see appendix).

3. Results

3.1. Top-down optimal policies
We quantify the performance of the different policies
associated with our choice of αM,αE,αS, with three
different measures: Ec =

1
αE T

∫ T
0 Gecon(t) dt, which

quantifies economic loss and represents the fraction

of days of lost economic activity, ND =
Sy(0)−Sy(T)

N ×
0.001 + So(0)−So(T)

N × 0.02, which is the expected frac-
tion of the population that will die after one year,
computed from estimates of the infection fatality rate
for the young (0.001) and the old (0.02) populations,
and TC, the time spent at peak hospital capacity.
Table 1 shows the performance of different strategies
using these measures.

As a benchmark, we first assumed equal weights,
αM,E,S = 1 and calculated the optimal solution for this
case. We emphasize that our scalar controller mod-
ulates the time evolution of infections in the young
and old populations differently, optimally accounting
for their intrinsic dynamics (figures 2(A) and (B)).
The optimal controller starts with no lockdown i.e.
u = 0, and increases with the rise in the number
of infected, reaching its maximum around day 50.
This shows that when we minimize mortality and
socio-economic costs together, lockdown needs to be
imposed only when the number of infected reaches a
critical value. After this initial growth, due to decrease
in the number of susceptible people, the control
measures gradually diminish over the course of about
175 days, but then increases again with a second
peak soon after. This second peak in the lockdown
makes the total period of saturated hospital capacity
end sooner as can be observed and would disappear
if the mortality cost is weighted less (figure 3(A)).
Figure 2(B) shows the mortality, economic and social
costs associated with this solution; the mortality cost
tracks the weighted number of severely ill patients
IC(t), the economic cost Gecon. tracks the control vari-
able u(t) since we have assumed a linear relationship
linking them in (3a), and the social cost is quadratic in
the control cost u(t). For the αM,E,S = 1 solution, we
lose 18% of economic activity with 0.3% death rate
after one year.

Moving away from the benchmark case of αM =

αE = αS = 1 and weighting the socioeconomic bur-
dens relative to mortality costs changes the policies.

6 Since the optimal control does not exceed c = 0.6 in all our
solutions, the precise value of this upper bound will not affect our
results.

In figure 3(A) we show that weighting the socioe-
conomic costs (αM = 0.2 < αE = αS = 1) strongly
leads to the disappearance of the second peak in the
social distancing control parameter u(t), along with
a corresponding reduction in duration of the control
measures (Ec = 0.14) and a corresponding increase
in the time spent at critical ICU capacity by 30%
(table 1). We note that increasing the socioeconomic
weights much further does not change the qualitative
nature of the solution significantly because of the
resource constraint associated with ICU capacity. On
the other hand, as we increase the relative weight on
the mortality cost with (αM = 1.35 > αE = αS = 1),
the resulting control policy u(t) shown in figure 3(B)
is similar to that shown in figure 2(A) in the ini-
tial phase, starting at zero and then rising quickly.
However, it will extend over a longer period of time
and the second bump will be more pronounced,
leading to a shorter time at maximum ICU capacity.
Further increasing the weight to αM = 5 leads to a
lockdown of nearly constant intensity (figure 3(C)).
Note that considerably increasing αM beyond this
point does not induce a much stronger lockdown.
This is because it is sufficient to reduce the effective
reproduction number to just below unity whence
the intrinsic dynamics of disease transmission will
limit the spread of the epidemic, and any farther
increase in u will just cause socioeconomic damages.
A simple estimate of the maximum control required
follows from the relation (1 − u) R0 = 1, leading to
u ≈ 0.55, which is close to the value observed in
figure 3(C). This strategy results in low mortality
(ND = 4 × 10−5) and no strain on hospital capacity
(Tc = 0), however, the economic burden will be great
(Ec ≈ 0.5). Therefore, we see that a strategy such as
the αM,E,S = 1 solution can strike a balance between
the two extremes in economic and mortality costs.
Finally, figure C1 shows the performance of a periodic
strategy with full lockdown (≈2 months) followed by
reopening (≈2 months). This strategy leads to higher
economic loss and considerably exceeds hospital
capacity.

3.2. Contact allocation and batching
Although the above framework provides the optimal
value of the control variable u(t), it does not specify
how this can be realized in practice. The reduction in
transmittance can be accomplished by reducing the
number of contacts, or reducing the probability of
infection per contact. The latter can be accomplished
by masks, hygiene and other measures while the
former can be accomplished by reducing the density
of people in public and private gatherings. Naturally,
reducing density can happen either through use of
larger spaces or reducing the number of people in
contact by a factor of (1 − u), which we denote as the
participation number. Since it might not be feasible to
enlarge the space of all gatherings, reduction in par-
ticipation number is a necessary strategy to achieve

5
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Figure 2. Solutions of the optimal control problem. (A) Solution to the optimal control problem described in equation (3a)
using the weights αM,E,S = 1. The quantity IC (3b) represents the expected number of patients needing ICUs. The color of the
plots determines the y-axis (left or right) they should be read from. (B) The values of the different costs (Gmort, Gecon, Gsoc.)
corresponding to panel (A). Parameters correspond to data from Germany (see appendix). For analogous results using US data
see the appendix.

Figure 3. Optimal control solutions for different weights on mortality and socioeconomic costs. (A) Same as figure 2(A) with
high weights on the social and economic costs. This strategy results in a shorter lockdown period combined with a longer period
of maximum hospital capacity. (B) Increasing the weight on the mortality cost, αM = 1.35, leads to a longer lockdown period and
a shorter period of maximum hospital capacity. (C) Continuing to increase the weight of the mortality cost leads to a constant
lockdown (except near the end) to prevent the number of infections from increasing. The values of αM are chosen to explore the
different lockdown policies.

a certain value of u. We now describe a solution to
this allocation problem and illustrate how choosing
the right strategies can result in a further reduction of
infections and economic losses for the same u.

For each strategy, we will take a given time period
Δt, which for concreteness can be taken as one week,
and divide it into two shifts. The framework of batch-
ing and optimization presented below is assumed
to be a two timescale problem with the batching
happening on the fast time scale and the optimal
control on the slower timescale. For simplicity, we

also assume that at the beginning of each week the
groups are selected from a homogeneous population
(independently of age). More specifically, the ratio of
susceptible people in each group at the beginning of
the week is the same. This assumption, which may be

relaxed, allows us to easily extend the previous opti-
mal control problem to the case of batching strategies
(see figure 4).

In order to highlight the advantage of having
alternating shifts we first consider a strategy where
the same fraction of people (N1) are working for an
extended period of time. At a given time t, the sus-
ceptible population is given by S1(t) and the infected
is I1(t). We assume S1(t) � I1(t), which has to be
true for a well controlled epidemic that is not near
completion. Then, for a small enough period Δt the
number of infected increases by a factor

I(t +Δt) = exp [γ (R(t) − 1)Δt] I1(t),

R(t) ≡ (1 − u(t))S(t)φ

N(t) γ
.

(4)

6
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Figure 4. Optimal batching strategies. (A) The first row illustrates the reduction of transmission using alternating strategies with
participation ratio (1 − u) = 0.5: by letting each group recover for half of the shifting period, 3 days for example, and be active in
the other, we reduce the effective reproduction number by an additional factor of 2 (see equation (4) and SI for derivation). (B)
Comparison of the two different strategies for controlling an epidemic with a basic reproduction number R0 = 3, γ = 0.16 and a
fixed u(t) = 0.5. Panels (C)–(E) show the solution of the optimal control problem with different values of αM combined with the
batching strategy, which effectively reduces φ by a factor of (1 − u(t)) as given in equation (6). Solutions obtained in this case
achieve a better compromise between lives lost and economic loss. We can achieve lower economic impact with a slightly lower
mortality (C) or save many lives without an exceedingly high economic cost (E). Compare panels (C)–(E) with figure 3. Similarly
to figure 3(B), the values of αM are chosen to explore the different lockdown policies. Parameters correspond to the German data
set (see appendix).

In the second strategy, similar to that explored
in [35], the two groups N1 and N2 alternate par-
ticipation in periods of Δt/2 each. In time Δt,
each group has participated a time Δt/2 and fully
recovered with recovery rate γ in a time period
of Δt/2 (see figure 4(A)). This combines to give
the total number of infected as (see appendix for
details)

I(t +Δt) = exp

[
γ

(
R(t)

2
− 1

)
Δt

]
I(t). (5)

For u = 0.5, we see that the alternating strategy
effectively drops the reproduction number R0 by
two (equation (5)), while the constant strategy just
amounts to a decrease in the initial number of actively
infecting people by two (equation (4)). Figure 4(B)
illustrates the difference between the two solutions
over the course of an epidemic with u = 0.5 and
compares them to the case of a completely mixed
population (random).

For general u(t), the alternating strategy results in
an effective growth rate (see appendix)

lim
Δt→0

I(t +Δt) − I(t)

Δt I(t)
= γ [(1 − u(t)) R(t) − 1] ,

(6)
which reduces the effective reproduction number
(equation (4)) by an extra factor of (1 − u). With
this result, we can implement the alternating strategy
in the optimal control framework described above.
The only modification needed is to replace φ in
equation (1) with (1 − u)φ (appendix). The results
obtained are shown in figure 4. Note that the max-
imum lockdown required to stop the epidemic is
now closer to u = 0.33 (figure 4(E)) compared with
u = 0.55 in the absence of batching (figure 3(C)).
Furthermore, it is much easier in the present case

Table 1. Comparing the performance of some of the control
strategies shown in figures 2–4. Here Ec is the fraction of days
of economic activity (per person) lost, ND is the expected
mortality rate (fraction of dead in the population), Tc is the
time spent at peak hospital capacity. The periodic lockdown
corresponds to appendix, figure C1. The batching column
corresponds to figure 4(D) which may be compared with
column αM = 1. Throughout our analysis we fix
αE = αS = 1.

αM = 0.2 αM = 1 αM = 5 Periodic Batching

Ec 0.14 0.18 0.48 0.50 0.20
ND 0.0036 0.003 4 × 10−5 — 0.0017
Tc 158 124 0 — 48

to achieve a compromise between mortality and
economic costs. Comparing the two socioeconomic
focused strategies (figure 3(A) vs figure 4(C)), we
find that batching achieves a 40% less economic
losses. Comparing figure 2(A) with figure 4(D) we
see a 50% reduction in both the number of lives
lost and time spent at maximum hospital capac-
ity with a negligible increase in economic losses
(table 1). Our minimal approach on how to include
the allocation problem into our optimal control
framework already shows the resulting improve-
ment in mitigating pandemic costs, at the slight
expense of increasing the logistical complexity of
batching.

3.3. Sensitivity to parameters, cost functionals
and epidemic model
Our results so far are driven by our choice of
the epidemic model, the choice of cost function-
als, and the parameters extracted from data. Under-
standing the range of robustness of our results to
these choices requires us to vary each of these

7
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Figure 5. Sensitivity of the optimal control strategy to parameters from German data estimates (see appendix). (A) Magnitude of
the controller u(t) subject to the worst and the best case estimates for the φ, γ parameter bounds. I corresponds to the worst case
(φ = 0.042, γ = 0.14), II corresponds to the nominal case (φ = 0.036, γ = 0.16) shown in figure 2(A), and III to the best case
(φ = 0.032, γ = 0.21). (B) Variation of the controller to changes py, po and NICU. (C) Sensitivity of the controlled dynamics,
using the nominal u, to uncertainties in the number of initial infected Iy(0), Io(0). Contours and colors correspond to the
maximum predicted value of (pyIy(t) + poIo(t))/NICU, where NICU = 0.0003N. The uncertainty ranges of Iy(0)(Io(0)) span large
deviations from their nominal value marked by the black triangle. The black curves mark the critical level set beyond which the
needed ICUs exceeds the available ones. Two of such cases are shown in panels (D) and (E).

separately and determine their effect on the resulting
policies.

To understand the uncertainty in our parameter
estimates, we perform a sensitivity analysis of the
optimal control policy shown in figure 2(A). The gray
curves in figure 5(A) delimit the possible changes of
the optimal control when φ, γ vary from the worst
and the best case estimates obtained from data (see
appendix). This analysis shows that the shape of the
nominal optimal control strategy (dashed black) is
robust to uncertainties in φ, γ. Figure 5(B) shows
the sensitivity analysis with respect to changes in the
parameters py, po, NICU. A 30% increase of py induces
a moderate increase in the optimal u, while a similar
increase of po leads to a larger change in lockdown
intensity. By contrast, a 30% increase of NICU reduces
the lockdown period by ≈70 days as well as the
overall lockdown strength. We note the robustness of
the global shape of the optimal u to changes in all
parameters.

To quantify the sensitivity of the controlled
dynamics to uncertain initial conditions, we consider
a uniform grid of initial infected Iy(0), Io(0) span-
ning significant deviations from their nominal value
marked by the black triangle. For each initial con-
dition Iy(0), Io(0), we set Sy(0) = Ny − Iy(0), So(0) =
No − Io(0), Ry(0) = Ro(0) = 0, and simulate the pan-
demic evolution using the nominal u. As a per-
formance metric, for each initial condition we
compute the maximum of (pyIy(t) + poIo(t))/NICU,
where NICU = 0.0003N, and plot the contour of this
scalar field in figure 5(C). We note how these contours
approximately run in the direction corresponding to
Iy(0) + Io(0) = constant, implying that our results
are more sensitive to uncertainty in the total num-
ber of infected. The black curves mark the critical

(i.e. equal to 1) level set beyond which the needed
ICUs exceed the available ones. Overall, our optimal
controller guarantees that the number of available
ICUs is enough for a large set of uncertainties in
initial infected. In figures 5(D) and (E), we show the
evolution of the pandemic in two cases where hospital
capacity is exceeded. Given a nominal control policy,
underestimating the initial infected one expects a
shortage of available ICUs (figure 5(D)). However,
it is less intuitive that the same would happen when
one designs the optimal u overestimating the initial I
(figure 5(E)). The reason behind this surprising result
is that minimizing our costs tends to reduce u to avoid
unnecessary socioeconomic damages. Figure 5(E)
shows that starting from smaller Iy(0), Io(0), it
takes longer to manifest a significant increase of
infected, and by that time, the nominal decaying
controller is unable to prevent exceeding hospital
capacity.

To determine how our results change when using
more complex models, we repeat our analysis by (i)
replacing our SIR model by an SEIR model [36],
which incorporates an exposed but not yet infected
group Ei, and (ii) altering the socioeconomic cost
functions as described in the previous section (see
appendix for details). Neither of these changes the
nature of our solutions (figures H1 and H2).

3.4. Behavioral dynamics and bottom-up optimal
policies
So far we have considered how the spread of infec-
tion may be curbed by externally imposed lockdown
measures. However, the dynamics of disease trans-
mission also critically depends on how people alter
their behavior in response to perceived levels of risk

8
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Figure 6. Changing behavior in response to risk perception. (A) Solution for the optimal control problem with behavioral
dynamics incorporated (equation (7)). The parameters used are the ones extracted from German data (see appendix), in addition
to αM,E,S = 1, τ = 2γ−1, v = 1 and δ = 0.2. (B) and (C) Same as (A) with different values of δ. Note how in (C), as the number
of infections starts to decrease, the top-down control is required to increase to avoid further outbreaks.

[37–41]. To quantify this notion, we note the obser-
vation that as the number of (reported) cases goes
up, without being forced to do so, people will often
spontaneously practice more social distancing. How-
ever, this response to the number of infections is not
instantaneous and instead happens on a typical time
scale τ . We model these aspects with the following
phenomenological equation for the parameter φ,

dφ(t)

dt
= −φ(t) − φ0 (1 − δ tanh [v IC(t)])

τ
, (7)

where φ0 is the reference level at the start of the
epidemic, the factor δ is a measure of the maxi-
mum change in φ, v determines the sensitivity of the
behavioral response and τ is the time scale associated
with the dynamics of behavior change. For τ � 1,
φ becomes a function of the current IC(t), which is
similar to the prevalence-dependent force of infection
introduced in [42]. While these parameters may be
estimated by analyzing the effect of public events on
mobility data [43], this lies outside the scope of this
paper.

This extension of the SIR model allows us to
study the bottom-up response of the population to
an evolving pandemic, and is particularly important
for countries where the social costs of an enforced
(top-down) lockdown can be high. By including (7)
in our control framework (see appendix for details),
we obtain different optimal scenarios by varying the
parameter δ, which represents the magnitude of the
bottom-up behavioral response (figure 6). For small
values of δ (figure 6(A)), the solution is similar to
the results of figure 3, but with a slightly smaller
enforced lockdown. As we increase δ, the optimal
control u(t) decreases in magnitude further until the
two peaks become separated by a region having u = 0.
This implies that when people respond strongly to
a peak in the number of reported cases, there is no
need for enforcing lockdowns from the top-down
with the associated social costs. As δ increases further,
the first peak goes away and we observe a later peak
in the optimal policy (figure 6(C)). This is because
as the number of reported cases drops, φ increases,
hence requiring a top-down intervention to prevent a
second outbreak.

4. Conclusions

The value of a mathematical model is in its ability
to (i) abstract a minimal framework that clearly lays
out the underlying assumptions and (ii) use analysis
combined with experimental data to provide qual-
itative insights that go beyond verbal reasoning. If
these lead to a sharpening of the original question and
direct further investigations, the model has served its
purpose. We close with a discussion of the qualitative
insights from the preceding calculations, highlight the
limitations of our model, and suggest possible future
improvements to the question of how NPIs might
minimize pandemic costs.

4.1. Qualitative conclusions
4.1.1. Age-structured partial lockdown
outperforms periodic lockdown
Taking into account the mortality and morbidity
differences in addition to the difference in contact
rates between and among the different age groups, we
found optimal policies that better mitigate socioeco-
nomic losses while reducing the mortality cost. We
emphasize that even using an easily implementable
scalar controller these policies reduce contacts in the
young and old age groups differently (equation (2)),
accounting for their intrinsic dynamics (figures 2–4).

Solutions that heavily weight economic costs start
with no lockdown (u(t) = 0) and only reduce con-
tacts as the number of infections rises to near hospital
capacity. Such a strategy results in a higher fraction
of the population getting infected (for COVID-19
immunity due to infections may not be durable on
the long term [44, 45]), allowing the control to pro-
gressively drop down to zero over time. This is to
be contrasted with measures implemented by many
countries, which start with a severe lockdown and
then proceed to open up. Unless full lockdown is
implemented for the entire duration of the pandemic
(figure 3(C)), the risk of outbreaks remains extremely
high when societies reopen (appendix, figure C1).

Furthermore, complete lockdown (u(t) = 1) is
not required in general to slow the spread of the
epidemic, and instead it is enough to bring the effec-
tive reproduction number to less than unity. This
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is why in figure 3(C), with a higher weight on the
mortality cost, the value of u(t) does not exceed
(R0 − 1)/R0 ≈ 0.55.

4.1.2. Alternating outperforms bulk strategies with
marginally higher logistic costs
Alternating strategies can reduce significantly the
total mortality and economic impact of the epi-
demic. This happens both through de-densification
of public spaces and reduction of the time inter-
val when an infected person transmits the virus to
others.

An effective SIR model that incorporates batching
strategies into the optimal control framework lead to
a 60% reduction in the period of saturated hospi-
tal capacity and 50% less mortality, with negligible
increase of economic losses (table 1). Furthermore,
the minimum required value to suppress the epi-
demic in this case drops down to u = (

√
R0 − 1)/√

R0 ≈ 0.33 (see figure 4(E)). In other words,
about 70% of people could be participating eco-
nomically and working without any outbreaks, as
long as 60% of them are cycling in alternating
shifts.

4.1.3. Bottom-up behavioral dynamics helps
mitigating pandemic costs
In addition, we included bottom-up behavior changes
due to risk perception in our optimal control problem
and showed that a significant reduction in hospital
load can be achieved with mild imposed lockdowns
(figure 6(C)). This is due to the self-imposed isola-
tion from people as the number of reported cases
increases.

4.1.4. Sensitivity analysis quantifies robustness of
policies to parameter uncertainty
The nature of the optimal lockdown policy is robust
to a range of uncertainty in the relevant model param-
eters and initial conditions (figure 5). Figure 5(C)
illustrates the effects of wrongly estimating the initial
infected on reaching hospital capacity. We find that
both large underestimates (figure 5(D)) and, interest-
ingly, overestimates (figure 5(E)) of initial conditions
can lead to a crisis driven by exceeding hospital
capacity. The latter is because the nominal controller
is out of phase with the dynamics of the disease: it
peaks too early and decays when the actual number
of infected cases is increasing.

This last problem is exacerbated by delays in
the onset of symptoms which makes using tests to
estimate the current state of the system very difficult.
Extrapolation, in addition to current test results,
should be used to assess the current number of
infections.

4.1.5. Policies are robust to form of socio-economic
cost within a class of epidemic models
Our analysis is predicated on the classical SIR
model and a minimal cost that weights mortality,

social and economic factors differentially. Replac-
ing the SIR with the SEIR model, which incor-
porates an exposed but not yet infected group Ei

and using different forms of the socioeconomic
cost does not change the qualitative nature of our
solutions, highlighting the robustness of our study
(figures H1 and H2).

4.2. Limitations and future improvements
4.2.1. Accuracy of parameter estimation affects the
robustness of optimal policies
While using real data allows to estimate the model
parameters, and simulate and quantify the outcome
of different optimal policies, the limited amount of
data has made some parameters difficult to estimate,
particularly those associated with infection rates. As
more high quality data becomes available, our results
may have to be updated in two ways: the nature of
the optimal policies might change, and the range of
robustness implied by sensitivity analysis will also
vary.

4.2.2. Minimal framework does not account for
stochasticity, additional compartments, spatial
variability, complex batching and control
Our simple SIR model with a two-age structure
captures critical features in the dynamics of disease
spread, such as the initial exponential growth, final
herd immunity and their relation to the basic problem
parameters. However, there are several effects that
we have not included. The most important are
to include the effects of additional compartments
and stochasticity. Since COVID-19 is known to be
transmitted through asymptomatic and presymp-
tomatic individuals (which may be a viral evo-
lutionary adaptive strategy [46]), accounting for
these effect is a crucial addition to the present
analysis.

In addition, we have not explicitly accounted for
stochasticity in disease transmission. Instead, we used
a safety factor in NICU, and carried out a sensitivity
analysis with respect to changes in the model param-
eters and initial conditions. In the early stages of the
disease, given the importance of small number fluctu-
ations, stochastic epidemic models will be needed for
more robust predictions.

Adding more control inputs and complex batch-
ing of populations can lead to strategies that bet-
ter exploit clinical and epidemiological differences
between the different age groups and provide a better
solution to the optimal allocation problem involving
spatiotemporal interventions. Such changes, how-
ever, are likely to be more difficult to deploy.
Finally, we acknowledge that the detailed imple-
mentation of suggested strategies is challenging, as
it would be for any intervention at the societal
level. This, however, is outside the scope of this
work.
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Glossary

φ Transmissivity, probability of an infection
from a meeting of an infected and a suscep-
tible person.

γ Rate of removal of infected individuals.
Cij Number of contacts per day a person of age

i makes with people from group j (contact
matrix).

c0 Largest eigenvalue of the contact matrix.
R0 Basic reproduction number, number of sec-

ondary cases one case would produce in a
completely susceptible population.

Ii Number of infected people in group i.
Si Number of susceptible people in group i.
Ri Number of removed people in group i.
pi Probability of needing ICU for an infected

person in group i.
NICU The number of available ICUs in the region

of interest.
IC The expected number of people needing

ICUs as a fraction of total available ICUs.
u A function that controls the intensity of the

lockdown measures.
αM The weight of the mortality cost in the objec-

tive function.
αE The weight of the economic cost in the objec-

tive function.
αS The weight of the social cost in the objective

function.
δ Magnitude of behavior change as response to

change in infections.
v Sensitivity of behavior change to changes in

the number of infections.

Appendix A. Model

Our model is a modification of the classical SIR
model that accounts for an age-structured population
with a non-trivial contact structure that follows the
dynamics given by

Ṡi = −λi(t)Si, (A.1)

İi = λi(t)Si − γIi, (A.2)

Ṙi = γIi, (A.3)

λi(t) = φ
∑
j=1,2

Cij
Ij

Nj
, (A.4)

Cij = C0
ij − u(t)CC

ij . (A.5)

To keep the model simple, we assumed only two age
classes, and a scalar control parameter u ∈ [0, uM]
that modulates the constant control-contact matrix
CC (A.5). For notation simplicity, we define the mod-
ified contact matrices C̃ with entries C̃ij = Cij/Nj.
Using equations (A.4) and (A.5), we write λ as

λ = φC̃0I− uφC̃CI, (A.6)

where I = [Iy, Io]�. Denoting by D0(x) the open-loop
vector with entries D0

i = φC̃0
ijIjSi, and by DC(x) the

vector with entries DC
i = −φC̃C

ij IjSi, we can rewrite
the dynamical system in compact form as

[
Ṡ

İ

]
︸︷︷︸
ẋ

=

[
−D0(x)

D0(x) − γI

]
︸ ︷︷ ︸

f0(x)

+ u

[
−DC(x)
DC(x)

]
︸ ︷︷ ︸

fC(x)

,

f(x, u) = f 0(x) + ufC(x), x(0) = x0.

(A.7)

Because uM < 1, if C0 = CC, Cij > 0. To model a pol-
icy that favors contact inhibition of the old population
using a scalar controller, we choose

CC =

[
C0

yy C0
yo/uM

C0
oy C0

oo/uM

]
. (A.8)

This corresponds to reducing the density of the young
population by a factor of (1 − u) and the old popula-
tion by the smaller factor (1 − u/uM). For simplicity,
we assumed that the rate of contacts with a popula-
tion is proportional to the number of them not in
lockdown, which leads to the given form of the CC.
Note that when u = uM, the second column of Cij will
be zero, the minimum allowed value. In that case, the
number of participating people in the old population
has been reduced to zero. If the restriction in contacts
is done differently, for example if both populations
have the same participation ratio but older people are
given stronger protective equipment, the expression
for the matrix CC will be different.
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The expression for the economic cost in the main
text could be changed to account for the different rates
of quarantine among the age groups. Specifically,

Gecon = αE

(
1 − Ny − Iy(t)

N
(1 − u(t))

− No − Io(t)

N

(
1 − u(t)

uM

))
. (A.9)

However, since this is not expected to change the
qualitative nature of our results, we used the factor of
(1 − u) for both populations in the economic cost.

Appendix B. Optimal control

In this section, we derive the set of equations to solve
our optimal control using the Pontryagin’s maximum
principle or indirect method [17, 48]. The deriva-
tion below applies to the optimal control problem
described in equation (3) of the main text and can
be adjusted accordingly for the control problems
involving batching or behavioral dynamics.

B.1. Constraints and Lagrange multipliers
In the language of optimal control, we have a Lagrange
problem, with mixed inequality constraints

g(u) =

[
u

uM − u

]
� 0, t ∈ [0, T], (B.1)

and pure state inequality constraints

h(x) = NICU − (py Iy(t) + po Io(t)) � 0, t ∈ [0, T].
(B.2)

Pure state constraints are usually more difficult to
handle because they can be controlled only indirectly
through equation (B.3). We note that with a scalar
controller it is typically not possible to enforce more
than one pure state constraint as the corresponding
full rank condition would not be satisfied.

The pure state inequality constraint is of
order one, as u appears for the first time in
h1 = dh(x(t))/dt = 〈∇xh, f(x, u)〉

∇xh =
[
0, 0,−py,−po

]
;

h1 = 〈p,−D0(x) + γI− uDC(x)〉,
(B.3)

where p = [py, po]� and 〈., .〉 is the inner prod-
uct between vectors. With respect to the constraint
h(x) � 0, an interval (θ1, θ2) ⊂ [0, T] is called an
interior interval if h(x) > 0, ∀ t ∈ (θ1, θ2). If the
optimal trajectory ‘hits the boundary’, i.e., satisfies
h(x, t) = 0, then [τ 1, τ 2] is the boundary interval. An
instant τ 1 is called an entry time if there is an interior
interval ending at t = τ 1 and a boundary interval
starting at τ 1. Correspondingly, τ 2 is the exit time
if a boundary interval ends and an interior interval
starts at τ 2. If the trajectory just touches the boundary
at time τ , while it is in the interior just before and
just after τ , then τ is called a contact time. Taken

together, entry, exit, and contact times are called
junction times. The pure state constraint is full rank
on any boundary interval [τ 1, τ 2] because

rank[∂h1/∂u] = rank
[
−〈[py, po],DC(x)〉

]
= 1
(B.4)

from the definition of DC(x). The mixed inequality
constraint is also full rank because

rank[∂g/∂u, diag(g)] = 2 (B.5)

along any optimal solutions. This full rank condition
ensures that the gradients with respect to u of all the
mixed constraints are linearly independent.

The Lagrange multipliers must satisfy the comple-
mentary slackness condition

μ1 � 0, μ1u = 0 (B.6)

μ2 � 0, μ2(uM − u) = 0 (B.7)

η � 0, η(NICU − (pyIy + poIo)) = 0, η̇ � 0.

(B.8)
B.2. Solving the optimal control problem
Using the indirect method maximum principle [17],
we can then define the Hamiltonian and the associ-
ated Lagrangian as

H(x, u, ζ) = 〈ζ, f 0(x)〉+ 〈ζ, ufC(x)〉 − G(x, u),
(B.9)

L(x, u, ζ,μ, η) = 〈ζ, f 0(x)〉+ 〈ζ, ufC(x)〉 − G(x, u)

+ 〈μ,g(u)〉+ ηh1(x), (B.10)

where ζ(t) is the adjoint vector, and μ(t), η(t) the
Lagrange multipliers associated to the inequality con-
straints. We note that maximizing −G with respect
to the control variable is equivalent to minimizing G
with respect to it.

From the maximizing condition H(x∗, u∗, ζ) �
H(x∗, u, ζ), the optimal controller u∗

u∗(ζ,x∗) =
u2

M

2αS

[
〈ζ, fC(x∗)〉 − αE

N − I∗y − I∗o
N

]
.

(B.11)
In the interior of the feasible domain, i.e. where
h(x∗) > 0, g(u∗) � 0, while when x∗ is on the bound-
ary xb, ub∗ should satisfy the additional condition

h1(xb, ub∗) � 0, xb = {x : h(x) = 0}. (B.12)

The differential equation for the adjoint vector
ζ is

ζ̇ = −∂L(x∗, u∗(ζ,x), ζ,μ, η)

∂x

= −[∇x〈f(x∗, u∗(ζ,x∗)), ζ〉]�

+ [∇xG(x∗, u∗(ζ,x∗))]�

− [∇xh1(x∗, u∗(ζ,x∗))]�η (B.13)

ζ(T−) = [∇xh]�γ = 0, (B.14)
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Figure C1. Periodic lockdowns. Panels (A) and (B) show the performance of a strategy that alternates between full lockdown
(u = 0.85) and open (u = 0) states approximately every two months. While initially the lockdowns do suppress the outbreak, the
situation is unstable and an outbreak goes out of control in the second open phase. This happens since the recovery rate during
the lockdown is approximately γ = 0.16, while the growth rate for a population that is mostly susceptible (without control
measures) is estimated to be ρ = 0.2. To prevent this resurgence either longer lockdown or milder re-openings will be required.
The economic cost of this strategy, in terms of fraction of days lost will be greater Ec � 0.5. Since the maximum hospital capacity
is exceeded for this solution, we do not calculate the period Tc for this strategy.

where γ � 0, γh(x∗, T) = 0 and equation (B.14)
describe the transversality condition arising from the
pure state constraint.

In the presence of inequality constraints, the opti-
mal solution needs to satisfy additional conditions
which will provide the remaining equations for the
η and μ. To identify the ODE associated with the
Lagrange multiplier η, we use the fact that along
optimal trajectories dH/dt = dL/dt = ∂L/∂t which
gives:

d

dt
(〈μ,g(u∗))〉+ η(t)h1(x∗) ) = 0,

⇒ 〈μ,g(u∗) )〉+ ηh1(x∗) = const.

(B.15)

Additionally, the optimal trajectory x∗ must also
satisfy

∂L

∂u

∣∣∣∣
x∗ ,u∗(ζ,x∗)

= 〈ζ, fC(x∗)〉 − ∂uG(x∗, u∗)

+ 〈μ, ∂ug(u∗)〉 − η〈p,DC(x)〉

= 0.

= 〈ζ, fC(x∗)〉 − ∂uG(x∗, u∗)

+ μ1 − μ2 − η〈p,DC(x)〉 = 0.

(B.16)

From the complementary slackness conditions
equations (B.6)–(B.8) and (B.16), the following
equations hold along the optimal solution

u∗ = 0 : μ2(t) = 0,

μ1(t) = −〈ζ, fC〉+ ∂uG + η〈p,DC〉
(B.17)

0 < u∗ < uM : μ1(t) = μ2(t) = 0,

η〈p,DC〉 = −∂uG + 〈ζ, fC〉
(B.18)

u∗ = uM : μ1(t) = 0,

μ2(t) = 〈ζ, fC〉 − ∂uG − η〈p,DC〉
. (B.19)

From (B.8), when x /∈ xb, η(t) = 0 and the
equations above fully determine μ. When x ∈ xb,
equations (B.15) and (B.17)–(B.19) determine
μ, η. Therefore, equations (A.7), (B.11)–(B.15) and
(B.17)–(B.19) completely define the boundary value
problem that needs to be solved to compute u∗.
Finally, at any junction time τ , the following jump
conditions need to be satisfied [17]

ζ(τ−) = ζ(τ+) + α(τ)[∇xh]�, (B.20)

H(x∗(τ ), u∗(τ−), ζ(τ−)) = H(x∗(τ ), u∗(τ+), ζ(τ+)).
(B.21)

Here we solve the optimal control problem
numerically using the publicly available Open Opti-
mal Control Library (Open OCL) [27], which effec-
tively solves the optimal control problem using the
direct method via Casadi [28].

Appendix C. Periodic strategies

See figure C1.

Appendix D. Calculating the effective
reproduction number for batching
strategies

We will consider here the case when the participation

ratio (fraction of people participating economically,

given by 1 − u) is less that 0.5. The case when 1 − u >

0.5 can be solved in a similar fashion. We assume a

strategy where a fraction 1 − u of the population par-

ticipates in the first time period (Δt days) and another
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Figure D1. Batching strategies. Panel (A) illustrates the batching strategies for three different values of u. For concreteness, we
take Δt = 7 days. When u < 0.5, there will be a portion of the populations that is always infecting (left). By contrast, when
u > 0.5, there will be a portion of the population that is always recovering. (B) Comparing the effective description of batching
strategies to fine grained simulation. Here R0 = 3 and γ = 0.16 and u(t) = 0.5. We assume initially 0.1% of the population is
infected and R(0) = 0.

(1− u) participates in the second time period, while a
fraction (2u − 1) does not participate in both periods.
During the first time period, the number of infected
grows as

I

(
t +

Δt

2

)
= (2 u(t) − 1) exp

{
−γ

Δt

2

}
I(t)

+ (1 − u(t)) exp

{
−γ

Δt

2

}
I(t)

+ (1 − u(t)) exp

{
γ (R(t) − 1)

Δt

2

}
I(t).

(D.1)

In the second time period, the two groups switch
places and we get

I(t +Δt) = (2u(t) − 1) exp {−γΔt} I(t) + 2 (1 − u(t))

× exp

{
γ

(
R(t)

2
− 1

)
Δt

}
I(t). (D.2)

We get the effective growth rate through

ρeff ≡ lim
Δt→0

I(t +Δt) − I(t)

Δt I(t)

= γ [(1 − u(t)) R(t) − 1] . (D.3)

A similar calculation shows that for the case u < 0.5
we get the same expression for the effective growth
rate. In that case a fraction of (1 − 2u) works in
both periods and two fractions of ratio u work in
alternative shifts (see figure D1(A)). Figure D1(B)
shows a simulation of the effective description of the
batching strategy compared with a more fine grained
simulation that explicitly takes into account the shifts.
Notice how the approximation becomes better for a
smaller shift.

The derivations above assumed that S changes
slowly compared with I, which will be true if S ≈ N.

For example, significant variation in I happens at a
rate of order İ/I ∝ S/N, whereas the rate of variation
of S is much slower, Ṡ/S ∝ I/N. Consequently, when
R0 > 4, the approximation above will not work for
the entire duration of the simulation.

Appendix E. Parameter estimation for
single and two population SIR model

E.1. SIR without age structure
The data used for estimating the growth rate of the
infected population is the total confirmed infected
cases. This time-series captures the sum total of all
currently active infected as well as recovered individ-
uals, I(t) + R(t). For the US [47], we perform the
estimation over a 15 day moving time window span-
ning the month of March (result in figure E1(A)). The
maximum total detected cases was about ≈200 000,
less than 0.1% of the total population and hence, the
susceptible population is assumed to be a constant
and equal to the total population (S = N) during the
estimation period. Under this assumption, we have
linear dynamics for currently active infections and the
recovered population:

İ = (φ c − γ)I, Ṙ = γ I, (E.1)

where we factored out the mean number of contacts
per day c so that φ is the transmissibility. The solution
is given as

I(t) = e(φ c−γ) t I0

R(t) = R0 + γI0(φ c − γ)−1
(
e(φ c−γ) t − 1

) (E.2)

with I(0) = I0 and R(0) = R0.

14



Phys. Biol. 19 (2022) 055001 M Serra et al

Figure E1. Parameter estimation for US and Germany. (A) Eigenvalues (blue) determining growth of infections for US national
data is plotted with 95% confidence intervals (red) against last day of a 15 day estimation period. Eigenvalues are shown for 17
such periods. (B) log10 of total cumulative cases in people ages 0 to 59 (left) is plotted against time for sixteen German states. The
highlighted portions of the labeled curves were used for parameter estimation. This data is selected from early in the virus spread,
before the visible shift in growth rate that occurs around March 15th. The black vertical line marks the cutoff day of the data used
for fitting. The starting day for each highlighted section is the day cases in that state crossed a threshold, set here to 40 cases.
Parameter estimation was not sensitive to choosing a threshold of 100 rather than 40. (C) This panel repeats the analysis of (A),
which showed US data, for each German states separately. Note the interesting similarity of values between the different states.
(D) As described in the text, the ratio of young to old should be dictated by the dominant eigenvalue of the contact matrix, in this
figure we find a direct relation between the growth rate of the infected in both young and old populations across the different
German states (blue points). This implies a constant fraction between the two age groups. (E) Shows the fraction of the
populations in the different age groups as the number of infected increases by several orders of magnitude over the course of a
month. (F) Log plot of the number of infected over time well after lockdown in Germany. The slope of the line is ρ1 = 0.2 days−1.

To compare the trajectory generated by this model
with the US data for total infected cases, we sum I(t)
and R(t) from equation (E.2) to get the expression

I(t) + R(t) = a + b eρ t , (E.3)

where ρ = φc − γ, a = R0 − I0/(R0 − 1) and
b = I0R0/(R0 − 1). Equation (E.3) captures the
initial exponential growth phase in US data. The
uncertainty in initial conditions affects the estimated
total cases through the constants a, b whereas the
eigenvalue ρ captures the growth rate. Due to the
dominant exponential growth term, uncertainty in
the I0 and R0 via the constant a has a comparably
smaller effect on the fit. Given an estimate of ρ, we
use an estimate of the serial interval [49, 50] to get
the complete parameter set.

Thus if we fit b, ρ and the initial total case count
H0 = R0 + I0 from data and obtain an estimate of the
serial interval τ s, we can find the rest of the parameters
as

I0 = b (R0 − 1) /R0, R0 = H0 − I0,

φ c =
R0ρ

R0 − 1
, γ =

ρ

R0 − 1
, where R0 ≈ eρ τs .

(E.4)

Figure E1(A) shows the results for the fitting of US
data. The fit was done with the least square curve
fit function in Matlab and the error bars are 95%
confidence intervals from this function. Since φ is
always multiplied by c, when presenting the results for
φ we assume c = 10 (table E1).

E.2. SIR with age structure
In this section, we describe the parameter estima-
tion for the two age model based on the simpli-
fying assumption that the ratio of infected young
people to the infected old is constant throughout
the period over which the parameters are estimated.
This approximation works well since the leading
(left) eigenvector of the contact matrix will domi-
nate during this exponential growth phase. The next
section will provide theoretical justification for this
assumption while figures E1(C) and (D) show empir-
ical justification in the case of Germany. Using the
data [31] illustrated in figure E1(D), we find that the
mean ratio to be Iyoung/Iold ≈ 3.8 and with standard
deviation 0.27. Furthermore, we find the magnitude
of this leading eigenvector increases exponentially at
the rate ρ1 = 0.2 days−1 (see table E1) which amounts
to a doubling time of approximately 3.5 days. Since we
cannot estimate the contact matrix and the parameter
φ independently, only their product, we normalize the
contact matrix so that its leading eigenvalue is equal
to 10, corresponding roughly to 10 contacts per day
per person.

Under an assumption of constant Sy, So, with
Sy ≈ Ny and So ≈ No, from equations (A.1)–(A.4),
we have

İy = φ

(
Cyy Iy +

Ny

No
Cyo Io

)
− γ Iy

İo = φ

(
No

Ny
Coy Iy + Cyy Io

)
− γ Io

Ṙy = γ Iy, Ṙo = γ Io

. (E.5)

15



Phys. Biol. 19 (2022) 055001 M Serra et al

Table E1. Parameter estimates for the age-structured SIR model based on time-series data from Germany and the USA. ρ1 is estimated
via curve fitting. Nj is the populations in age group j, in millions of people. The parameters φ, γ and R0 are estimated using (E.4). The
serial interval is taken to be 4(3.5–4.5) days [49, 50]. The estimates of the growth rate are shown in figures E1(A) and (B). The contact
matrix elements have units of (days−1). Since we do not have time series age-structured data for the US the error bars on the contact
matrix are taken from the German counterpart.

Count. Ny No ρ1(days−1) γ(days−1) φ R0 C =

(
Cyy Cyo

Coy Coo

)

Ger. 57 23 0.2 ± 0.03 0.16(0.13–0.21) 0.036(0.032–0.042) 2.2(1.8–2.8)

(
8.5 ± 0.4 2.3 ± 0.2
5.6 ± 0.6 1.5 ± 0.4

)

USA 255 74 0.26 ± 0.08 0.14(0.09–0.21) 0.040(0.032–0.048) 2.8(1.9–4.6)

(
7.4 ± 0.3 2.3 ± 0.2
8.2 ± 0.9 2.6 ± 0.7

)

We can rewrite these equations as

⎡
⎢⎢⎣

İy

İo

Ṙy

Ṙo

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
φ Cyy − γ φ Coy 0 0
φ Cyo φ Coo − γ 0 0
γ 0 0 0
0 γ 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Iy

Io

Ry

Ro

⎤
⎥⎥⎦

= M

⎡
⎢⎢⎣

Iy

Io

Ry

Ro

⎤
⎥⎥⎦ . (E.6)

The matrix M has three distinct eigenvalues: 0, ρ1,
ρ2, with ρ1 > ρ2, and ρj has an associated eigenvec-

tor of the form v j =
[
1 mj γ/ρj γ mj/ρj

]T
, where

[1mj] are the left eigenvectors of the contact matrix
whose eigenvalues cj satisfy φ cj − γ = ρj. The zero
eigenvectors correspond to populations with only
recovered people and zero infected. As shown in the
next subsection, the linearized problem splits into two
separate SIR models, one for each eigenvector of the
contact matrix.

We fit the data to the following equation, which
only accounts for the leading eigenvalue of the contact
matrix,

Io(t) + Ro(t) = ay + b eρ1t

Iy(t) + Ry(t) = ao + b m1 eρ1t
. (E.7)

As in the single age group case (E.4), we can use
the exponential fit to estimate b and ρ1 in addition
to m1 and, using the initial populations numbers
Ii(0) + Ri(0), we can estimate the other parameters
(table E1). Note that here R0 is estimated from the
leading eigenvalue of the contact matrix c0 through
the relation R0 = φ c0/γ (see [32]).

E.3. The dominant eigenvector of the contact
matrix
In this section we show how to get an estimate of
the effective contact matrix using its dominant left
eigenvector. We write the age structured SIR model
(for Sj ≈ Nj) as

(
İyoung

İold

)
≡ İ =

(
φ CT − γ

)
I, Ṙ = γ I.

(E.8)

We can decompose both vectors R and I in terms of
the eigenvectors of the contact matrix C. Here, it is
assumed that γ is the same for all ages. If it is not then
we can repeat the same analysis with the eigenvectors
of the 2 × 2 matrix

(
φ CT − γ

)
, whereγ is a diagonal

matrix.
Denoting the (left) eigenvectors of C as V± and

the eigenvalues as ρ±, we find (because V± are linearly
independent) that the system of equations decouples
for each eigenvector of the contact matrix. Specifi-
cally,

İ± = (φ c± − γ) I±, Ṙ± = γ I±, (E.9)

where I± and R± are scalars and represent the com-
ponents in the eigenbasis of the contact matrix. Each
eigenvalue of the contact matrix determines two
growth rates of the system. One of them is zero and
the other is φc± − γ.

Thus, for long enough time, the system can be
approximated by I ≈ I+ e(φ c+−γ) t V+. Thus the
dominant eigenvector of the contact matrix should
determine the long term fraction of infected people
in the young and old populations.

Conversely, if we have empirically that the ratio
between the two populations is fixed over time
(see figure E1(C)), we can use that to have a rough
estimate of the contact matrix which is given by
CT = ρ+V+U

T
+ + ρ−V−U

T
− ≈ ρ+V+U

T
+, where

U± are the right eigenvectors of C. Here we assume
that VT

± ·U± = 1, otherwise we have to divide by
the corresponding inner product in each term.

From the German data, we have that
Iyoung/Iold = 3.8 with standard deviation σ = 0.3.
Thus we estimate the dominant eigenvector as
(3.8, 1)T and estimating the left eigenvector through
the consistency condition on the contact matrix we
get the results shown in table E1. While there is no age
structured time series data for the US we estimate the
dominant eigenvector using the aggregated data to
be (3.14, 1).

Appendix F. Optimal lockdown policies
for the US

See figure F1.
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Figure F1. Optimal control results for parameters extracted from US data. Panels (A)–(C) represent optimal control strategies
with no batching (similar to figure 3 in the main text). We have used a horizon period of 18 months. Due lower number of ICUs
and a higher growth rate it is harder to reduce the period spent at hospital capacity within one year without extended lockdown
measures. The situation is improved by incorporating batching strategies. Panels (D)–(F) show the behavior, for different values
of αM, of the optimal batching strategies (similar to figure 4 in the main text).

Figure G1. Changing behavior in response to risk perception (open loop dynamics). (A) φ̄ is the value of φ that the population
would settle on over time if IC was held fixed at a constant value, it is given by φ̄/φ0 = (1 − δ tanh (v IC)). The parameters used
to generate this figure are φ = 0.036, γ = 0.16, c = 10, v = 2 and δ = 1. (B) Solution for φ as a function of time from (G.2) and
u(t) = 0. (C) The corresponding number of infections over time. Note how bottom up response of people can control the
number of infections but will lead to oscillations.

Appendix G. Behavioral dynamics

We incorporate the behavioral dynamics described in
the main text by modifying the equations (A.1)–(A.5)
to

Ṡi = −φ
∑
j=y,o

Si Cij
Ij

Nj
,

İi = φ
∑
j=y,o

Si Cij
Ij

Nj
− γ Ii,

Ṙi = γ Ii,

Cij = C0
ij − u(t) CC

ij ,

(G.1)

φ̇ = −φ(t) − φ0 (1 − δ tanh (v IC))

τ
. (G.2)

Note that here φ is a dynamical function rather than a
constant. The solution to these equations for the open
loop case, u(t) = 0, is given in figure G1.

The objective function is changed (only the eco-
nomic cost changes) to

arg min
u

∫ T

0

G(x,u,t)︷ ︸︸ ︷
(Gmort + Gecon + Gsoc. ) dt,

Gmort = αM

(
py Iy(t) + po Io(t)

NICU

)

Gecon = αE

(
1 − N − Iy(t) − Io(t)

N
(1 − u(t))

φ(t)

φ(0)

)

Gsocial = αS

(
u(t)

uM

)2

,

subject to the constraints:

IC(t) ≡ py Iy(t) + po Io(t)

NICU
� 1,

0 � u � uM.

Appendix H. Model sensitivity analysis

In addition to studying the sensitivity of our predic-
tions to uncertainties in the parameters, it would also
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Figure H1. Optimal controls for the SEIR model. Solution of the optimal control problem with dynamics given in (H.1) and the
cost function given by equation (3) in the main text for (A) socioeconomically dominated (B) balanced and (C) mortality
dominated cost functions. Compare with figure 3 in the main text.

Figure H2. Modifying the socioeconomic costs. The first row represents the change of the quadratic dependence on u of the
social cost to Esoc. ∝

(
eu/uM − 1

)2
. The second row shows the result of changing the economic cost (using a Cobb–Douglas

function with labor out put elasticity equal to 2). Compare with figure 3 in the main text.

be useful to know how our predictions would change
for more realistic model. In order aid future work in
this direction and to further test the robustness of the
proposed strategies, we repeat our analysis by making
two different changes to our basic model.

H.1. SEIR model
The first change is to study an SEIR model [36] which
incorporates an exposed but not yet infected group
(Ei). The equations of motion in this case change to

Ṡi = −φ
∑
j=y,o

Si Cij
Ij

Nj
,

Ėi = φ
∑
j=y,o

Si Cij
Ij

Nj
− σ Ei,

İi = σ Ei − γ Ii,

Ṙi = γ Ii,

(H.1)

where σ−1 is proportional to the incubation period
which we take to be four days so that σ = 0.25 days−1.
We repeat our optimization procedure with the same
cost function and parameters used in figure 3 of the
main text, and show our results in figure H1. We note
that the results in this case are similar to those from
the SIR model (figure 3 in the main text).

H.2. Alternative socioeconomic costs
Here we analyze how our results change as we vary
the choice of the socioeconomic cost function. We
require the social cost to be increasing and convex
with respect to u so that it becomes steeper with
higher lockdown measures. First, we modify the
quadratic dependence on u of the social cost to Esoc. ∝(
eu/uM − 1

)2
. The results are shown in the first row of

figure H2 and again are consistent with the results of
figure 3 in the main text. Second, we have modified
the economic cost to the Cobb–Douglas function [25]
with labor output elasticity equal to 2. In particular,
we have

Gecon = αE

(
1 − N − Iy(t) − Io(t)

N
(1 − u(t))

)2

.

(H.2)
As shown in the second row of figure H2, the results
are again similar to figure 3 in the main text. In
this case, for αM = 1 the second bump has a much
shorter duration due to the increased sensitivity of
the economic cost on the fraction of people working.
However, by increasing αM, thus emphasising the
mortality cost more, the range of the second bump
increases just as before. Therefore, even in this case,
the range of policies observed remains qualitatively
unaltered.
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