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Morphogenetic flows in developmental biology are characterized
by the coordinated motion of thousands of cells that organize into
tissues, naturally raising the question of how this collective orga-
nization arises. Using only the kinematics of tissue deformation,
which naturally integrates local and global mechanisms along cell
paths, we identify the dynamic morphoskeletons behind morpho-
genesis, i.e., the evolving centerpieces of multicellular trajectory
patterns. These features are model- and parameter-free, frame-
invariant, and robust to measurement errors and can be computed
from unfiltered cell-velocity data. We reveal the spatial attrac-
tors and repellers of the embryo by quantifying its Lagrangian
deformation, information that is inaccessible to simple trajec-
tory inspection or Eulerian methods that are local and typically
frame-dependent. Computing these dynamic morphoskeletons
in wild-type and mutant chick and fly embryos, we find that
they capture the early footprint of known morphogenetic fea-
tures, reveal new ones, and quantitatively distinguish between
different phenotypes.

morphogenesis | cell motion | coherent structures | finite time Lyapunov
exponent

During embryonic development, cells undergo large-scale
coordinated motion during the process of tissue and organ

formation that together shape the embryo. Understanding these
processes requires integrating molecular, cellular, and multicel-
lular perspectives across a range of length and time scales, linking
cellular-level gene expressions and regulatory signaling networks
(1–4) to long-range intercellular interactions and mechanical
force generation (5–8). These approaches are complemented by
advances in live imaging techniques (9) that allow for the detailed
tracking of cellular trajectories (10–14), providing exquisite geo-
metric and kinematic information on tissue morphogenesis.
Some natural questions that these experimental approaches raise
include: Can one correlate cell position, cell velocity, and cell–
cell interactions with cell- and tissue-fate decisions? Can one
link gene-expression levels and cellular trajectories with active
force generation to help unravel the biophysical basis for mor-
phogenesis? Can one quantitatively analyze cell-motion data
to predict the ultimate outcomes of tissue morphogenesis and
organ development in normal and pathological situations? Here,
we address the last question by providing a mathematically
grounded framework to determine the evolving centerpieces
of morphogenetic movements using experimentally determined
cellular trajectories, thus providing an important step in bridg-
ing the gap between bottom-up mechanistic approaches and
top-down statistical and computational approaches (15, 16)
(Fig. 1A).

Minimally, any framework that aims to analyze spatiotemporal
trajectories in morphogenesis requires a self-consistent descrip-
tion of cell motion that is independent of the choice of reference
frame or parametrization. This frame-invariant description of
cell patterns is termed objective (17) and ensures that the mate-
rial response of a deforming continuum, e.g., biological tissue, is
independent of the observer. To quantify this notion, we start by
considering two coordinate systems used to describe cell flows:

the first corresponding to x∈R3 and a second one, x̄, defined
as x̄(t) = Q(t)x(t) + b(t), where Q(t), b(t) are a time-dependent
rotation matrix and translation vector. A quantity is objective
(frame invariant) if the corresponding descriptions in the x and
x̄ transform according to specific rules (17). In particular, scalars
must remain the same c̄ = c, vectors must transform as x, and
second-order tensors as Ā = QAQ>. Taking the time derivative
of x̄, ˙̄x(t) = Q̇(t)x(t) + Q(t)ẋ(t) + ḃ(t), one can easily see that
the velocity field and the streamlines, which are trajectories of
the frozen velocity field, are frame-dependent, i.e., any metrics
based on them for comparative purposes are likely to be erro-
neous (Fig. 1B), owing to the inability to remove the dependence
on artifacts associated with variations in the choice of reference
frames, etc.

Driven by the recent revolution in imaging morphogenetic
flows and cellular movements (18, 19), a range of approaches
have been developed to characterize mesoscopic cellular behav-
ior. These include statistical tools based on the connectivity
between neighboring sites (20) and methods quantifying cell-
shape changes and cell intercalation by mapping the temporal
evolution of strain rates between neighboring cells (5, 6). How-
ever, because of the general time dependence of cell motion, any
velocity or velocity-gradient features such as streamlines or strain
rates differ substantially from Lagrangian trajectory patterns that
integrate over the history of particles motion.

As an illustrative example, consider the analytic velocity field
v(x, t) = (x 1 sin 4t + x2(2 + cos 4t) + 0.2x1x2)e1 + (x 1(cos 4t−
2)− x2 sin 4t + 0.3x1x2)e2, whose objective rate of strain
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Fig. 1. (A) Sketch of bottom-up and top-down approaches to study cell
motion. Bottom-up approaches study local mechanisms driving cells. Top-
down approaches study patterns of cell motion caused by local and global
driving mechanisms. The DM uncovers the centerpieces of cell-trajectory
patterns in space and time. (B) Snapshots of a simple analytic velocity field
(blue) and its Lagrangian particle positions (green). The black dot marks the
position of a particle started from the black x marker at time 0. The complete
time evolution is available as Movie S1.

tensor S(x, t) has components Sij = (∂vi/∂xj + ∂vj/∂xi)/2.
Fig. 1B shows that the frame-dependent velocity field (blue)
suggests a vortex-type structure, while Lagrangian particles
(green) correctly reveal the presence of exponentially stretching
deformations. Even if one averages the objective dominant rate
of strain eigenvalue at a fixed (Eulerian) location marked by the
black x over a time interval [0, 1], this average completely ignores
the Lagrangian positions (black dot) explored by a trajectory
starting from the x marker at time 0. Using explicit formulas
relating Eulerian and Lagrangian deformations, in SI Appendix,
we show that local changes of tissue flows can lead to global
effects, which are detectable only by a Lagrangian analysis. This
simple example and observations show that Eulerian methods,
regardless of their objectivity, are inherently suboptimal for
studying cellular flows and suggest that a frame-invariant
Lagrangian method is more suitable to assess global flows such
as those seen in morphogenesis.

Here, we use the notion Lagrangian Coherent Structures
(LCSs) (21), initially derived to study fluid flow patterns, to cre-
ate an objective kinematic framework for analyzing cell motion.
This allows us to uncover the dynamic morphoskeletons (DMs)
underlying morphogenesis, which quantify Lagrangian tissue
deformations and correspond to the attracting and repelling
organizers of cell trajectories in space and time. We illustrate our
results on wild-type (WT) and mutant embryo imaging datasets
obtained by light-sheet microscopy (LSM) in the context of prim-
itive streak (PS) formation in the chick and early gastrulation in
the fly.

Defining the DM Using LCSs
In general, trajectories of time-dependent dynamical systems
have complicated shapes, are sensitive to changes in their ini-
tial conditions, and are characterized by multiple spatial and
temporal scales. However, underlying these complicated paths,
one often finds a robust skeleton that organizes the spatiotem-
poral structures in the dynamical system—referred to as LCSs
(21)—which shapes trajectory patterns and provides a simplified
description of the overall dynamics. They involve information
obtained by integrating the trajectories in space–time and, thus,
serve as a memory trace of the dynamical system. They can
be defined for large or small time spans (22). In a general
setting, we schematize this in Fig. 2 and illustrate the impact
of attracting and repelling LCSs on trajectory patterns over
a time interval [t0, t ]. The combined effect of attracting and
repelling LCSs is shown in Fig. 2B. For example, blue trajec-
tories represent two cells that were initially very close (blue
dots), but end up far apart. Even though they end up far apart,
and, hence, are apparently subject to very different fates, they
end up on the same attracting LCS after separating from a
repelling LCS. Therefore, assessing the system through indi-

vidual trajectories, despite being Lagrangian, will return poor
results.

While there are a number of methods to determine
Lagrangian (i.e., with memory) coherent structures (23), the
finite time Lyapunov exponent (FTLE), despite its limitations
(21), remains the most used because it is computationally simple.
The FTLE is characterized by a scalar field used to locate regions
of high separation (or convergence) of initially close (distant)
particles over [t0, t ]. Denoting by v(x, t) a velocity field obtained
from imaging data, the induced Lagrangian flow map Ft

t0(x0) is
given by

Ft
t0(x0) = x0 +

∫ t

t0

v(Fτ
t0(x0), τ) dτ , [1]

which maps the initial positions (of cells, membranes, or nuclei,
for example) x0 at time t0 to their final positions at time t . The
FTLE is then defined as

FTLE t
t0(x0) =

1

|T | ln

max
δx0

|

δxt︷ ︸︸ ︷
∇Ft

t0(x0)δx0 |
|δx0|

, [2]

where | · | represents the absolute value and∇ the Jacobian with
respect to x0. The FTLE is thus a measure of the maximum sep-
aration rate between a trajectory starting at x0 and a neighboring
one starting at x0 + δx0, over [t0, t ] (Fig. 2A) (see SI Appendix for
explicit formulas for computing Eq. 2).

We note that the FTLE depends on the base time t0,
the spatial location x0—which correspond to the positions of
Lagrangian particles at the base time—and the final time t , which

A

B

Fig. 2. (A) The FTLEt
t0

(x0) measures the maximum separation (∼ |δxt|/|δx0|)
induced by the flow at x0 over the time interval [t0, t] between two ini-
tially close points in the neighborhood of x0. A forward-time FTLE ridge—a
set of points with high FTLE values—marks a repelling LCS whose nearby
points from opposite sides of the ridge will experience the maximum sep-
aration over [t0, t], t> t0. Similarly, a backward-time FTLE ridge demarcates
an attracting LCS, i.e., a distinguished curve at t0 which has attracted initially
distant particles over [t, t0], t< t0. (B) Illustration of attracting and repelling
LCSs over a time interval of interest [ta, tb], tb > ta, during which cells move
from their initial configuration xa to their final one xb = Ft

t0
(xa). The for-

ward FTLE is a scalar field over xa, while the backward FTLE is over xb. Blue
trajectories show cells that start close to each other from opposite sides of a
repelling LCS and end up far apart along the same attracting LCS.
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sets the time scale T = t − t0. As illustrated in Fig. 2A, a set
of points x0 with high forward FTLE values (FW FTLE ridge)
marks a region at t0, whose neighboring particles from opposite
sides of the ridge will get repelled, achieving maximum separa-
tion at the later time t = t0 +T , T > 0. Similarly, a backward
FTLE (BW FTLE) ridge marks regions that at the base time
t0 have attracted initially distant particles over the time inter-
val [t0 +T , t0], T < 0. Together, the FW and BW FTLE fields
associated with varying time scales T uncover the exact spa-
tial locations of repelling and attracting LCSs, along with the
times at which they appear and cease to exist. We further note
that, over a time interval of interest [ta , tb ], tb > ta , during which
cells move from their initial configuration xa to their final one
xb = Ftb

ta
(xa), the FW FTLE is a scalar field over xa , while the BW

FTLE is a scalar field over xb . Therefore, over [ta , tb ], trajecto-
ries initially at opposite sides of FW FTLE ridges will be repelled
from each other and get attracted to BW FTLE ridges by time tb
(Fig. 2B).

A mechanical interpretation of Eq. 2 follows by noting that
the FTLEt

t0(x0) is proportional to the logarithm of the highest
eigenvalue λ2(x0) of the Cauchy–Green strain tensor Ct

t0(x0) =

[∇Ft
t0(x0)]∗∇Ft

t0(x0) (17), a naturally invariant measure of
deformation of a continuous medium. Hence, it represents the
maximum deformation induced by the flow over [t0, t ] on an
infinitesimal area element centered at x0 (Fig. 2A) and, thus, pro-
vides an exact link between the DM and the Lagrangian strain
experienced by cells during morphogenesis. Separation or con-
vergence of cell trajectories captured by the FTLE can arise from
a combination of isotropic (volume or area) changes—due, e.g.,
to cell divisions, ingression, and area change—and anisotropic
(shear) deformations—due to cell-shape changes and cell inter-
calation. To quantify these two effects, we define the percentage
of Lagrangian attraction due to anisotropic deformations over
[t , t0], t < t0 as

At
t0 =

√
λ2− 4

√
det Ct

t0

| 4
√

det Ct
t0
− 1|+

√
λ2− 4

√
det Ct

t0

%, [3]

where we dropped the x0 dependences (SI Appendix, Methods).
The same formula in forward time (t > t0) quantifies the percent-
age of anisotropic repulsion. Therefore, Eqs. 2 and 3 completely
quantify and characterize tissue deformations. We now deploy
these concepts on two paradigmatic problems in large-scale
morphogenetic flows: PS formation in the chicken embryo and
gastrulation in the whole fly embryo. In both cases, we will follow
the spatiotemporal evolution of the DM in terms of the FTLE
fields as a function of their memory T and, thus, determine
the attracting and repelling manifolds underlying tissue organi-
zation. We also compare the DM and the overall Lagrangian
deformations in WT and mutant phenotypes.

Results
PS Formation in Chicken Embryo. The PS is a hallmark of bilat-
eral symmetry in many organisms, is the site of ingression of
the mesoderm and endoderm precursors, and involves large-
scale cell flows to form an axial structure that serves to organize
embryogenesis. The formation of this structure is best under-
stood in the chicken embryo and involves coordinated flow of
more than 100,000 cells in the epiblast. Here, we generate a
cell-velocity dataset of an embryo with Green Fluorescent Pro-
tein labeled cell membranes (Myr-GFP) using a dedicated LMS,
as described in ref. 24. The velocity field is defined on a uni-
form rectangular grid of size 4.77 × 3.14 mm over a time
interval of approximately 12 h from the freshly laid egg [Eyal-
Giladi and Kochav stage XII (EGK-XII)] (25) to Hamburger
Hamilton Stages 4 (HH4) (26), prior to the onset of tissue move-

ment, with spatial resolutions of 0.65µm and temporal resolution
of 3 min. As in ref. 24, we filtered the cell velocities using a cen-
tered averaging filter with a 5× 5 spatial and a 5−time instances
temporal window sizes. Movie S2 shows the velocity field over-
laid over the experimental fluorescence images of the epiblast
surface. We then computed attracting and repelling LCSs as BW
and FW FTLE (SI Appendix, Methods) for a set of time scales |T |
spaced by 20 min.

Fig. 3 A, Left shows the FW FTLE12h
0 , indicating the pres-

ence of two repellers. The first repeller demarcates the boundary
between the embryonic and extraembryonic area. The second
repeller, in contrast, demarcates a sharp boundary within the
embryonic region. Fig. 3 A, Right shows the BW FTLE0

12h, high-
lighting the presence of an attractor that corresponds to the
formed PS. Passively transporting with F0

12h the BW FTLE field,
which is based at the final (12 h) cell configuration to the ini-
tial time (0 h), we identify the initial set of the mesendoderm
precursor cells (yellow region bounded by the black level set
in Fig. 3 A, Center) that will finally form the PS. We overlay
repeller two on this plot, and, marking cells on its different
sides in magenta and green, we show that it sharply divides
the A and P parts of the PS, as confirmed by the final
cell positions. From Movie S3, which shows a sequence of
Fig. 3A for different |T |, we observe that repeller two forms
around T = 400 min.

It is well established that cells in the anterior and posterior
streak differentially express key genes code for important sig-
nals and signal modulators and that cells in various parts of the
streak have different fates (27–29). Several of these genes are
initially expressed in sickle-shaped regions in the early streak-
stage embryo; however, their expression domains separate dur-
ing the streak extension (SI Appendix, Fig. S4). This suggests
that repeller two is a dynamic structure associated with the sep-
aration of gene-expression domains and a functional readout of
cell fate during streak formation, the mechanistic basis for which
needs to be investigated in future experiments. For comparison,
Movie S3 also shows the averaged velocity field, the evolution
of a dense set of points, and the deformation of an initially uni-
form grid that moves with the flow. Remarkably, repellers remain
entirely hidden to these tools. The attractor, instead, cannot be
detected by the average velocity diagnostic and becomes visi-
ble to the dense set of points and the deforming gird when the
PS is already formed. Although the latter two diagnostic are
Lagrangian, they do not use the deformation gradient ∇F, but
just the deformation F, hence, requiring longer time compared
to the FTLE for identifying attractors. While embryonic regions
toward which cells tend to cluster have been studied before (16,
24), our analysis precisely locates in space and time also repelling
regions that are key in shaping multicellular patterns and
studying cell fate.

Remarkably, already within 60 min, while cells barely moved,
the BW FTLE already shows a footprint of the PS forming
perpendicularly to the AP direction encircled by a blue ellipse
in Fig. 3B. Differently from existing studies, where the early
location of the PS is obtained by following backward in time
the cells belonging to the formed PS (24), our approach does
not use future data, hence revealing the footprint of PS forma-
tion only from Lagrangian deformations. Fig. 3C shows the At

t0
field associated with Fig. 3B, highlighting that the Lagrangian
attraction giving rise to the early PS footprint is dominated
(≥ 80%) by anisotropic deformations. In SI Appendix, Fig. S5
and Movie S11, we show a comparison of the BW FTLE, the
isotropic Lagrangian convergence, the velocity divergence, and
the At

t0 . This analysis highlights that the BW FTLE and the At
t0

completely capture and quantify the PS formation and tissue
deformations, both of which remain hidden to the Lagrangian
and Eulerian isotropic convergence fields.
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Fig. 3. (A, Left) FW FTLE corresponding to the full dataset highlights two repelling LCSs. (A, Right) BW FTLE corresponding to the full dataset high-
lights the attracting LCS corresponding to the formed PS. (A, Center) BW FTLE field in A, Right passively transported by F0

12h to the initial time marks
the initial position of the mesendoderm precursor cells, bounded by the solid black line, that will finally form the PS. Cells starting at different sides
of repeller two will form the anterior and posterior part of the PS. White areas correspond to the regions where the FTLE is unavailable because tra-
jectories left the domain over which the velocity field is defined. The FTLE has unit min− 1, and the axis units are in micrometers. The time evolution
of the FTLE fields and cell positions for different T is available as Movie S3. (B) The BW FTLE ridge (attracting LCS) for T = 1 h highlights the early
footprint of the PS (blue ellipse) using only data within [0, 1]h, during which cells (green dots), initially released on a uniform rectangular grid, barely
moved. 3D, three-dimensional. (C) The anisotropic deformation field associated with B shows that the cell convergence in the early PS formation is
dominated ≥ 80% by anisotropic deformations. (D) Same as A for a chicken embryo treated with an FGF receptor inhibitor. Movie S4 shows the time
evolution of the FTLE fields and cell positions for different T . (E) Lagrangian tissue deformation quantified as the spatially averaged

√
λ2 (blue), where

λ2 denotes the highest eigenvalue of CT
0 (x0). Red curves show the associated averaged % of anisotropic deformation. (F) Quantification of the initial area

of the mesendoderm precursor cells that will form the PS (Fig. 3 A, Center) computed automatically from the FTLE field, as explained in SI Appendix,
Fig. S6.

Fibroblast growth factor (FGF) signaling is required for the
early specification of mesendoderm and early gastrulation move-
ments in the chicken embryo (30, 31). Fig. 3D shows the same
analysis as Fig. 3A for a chicken embryo treated with 1µM of
an FGF receptor inhibitor (LY2874455), which was added at
t = 84 min (32). We find that the overall size of the attrac-
tor region is smaller compared to the WT, consistent with the
FGF treatment. We see that repeller two is absent in the treated
embryo, implying that development is inhibited before the func-
tional differentiation of A and P streak cells takes place. Movie
S4 shows Fig. 3D for different T . As an aggregate measure of
Lagrangian tissue deformation, we consider the spatial average
of
√
λ2, which measures the ratio of the deformed ellipse major

semiaxis to the initial radius of the undeformed infinitesimal
circle. Fig. 3E shows that after the first ≈ 4h , the tissue defor-
mation of the WT embryo is ≈ 20% higher compared to the
FGF-inhibitor–treated one. By contrast, the average percentage
of anisotropic deformation in the two cases is similar in the first
≈ 4h and then remains dominant≥ 72% in the WT, while rapidly
decreasing to ≈ 60% in the FGF-treated embryo, indicating a
key role for FGF signaling in the maintenance of cell–cell inter-
calation. While these changes are considerable, further work is
required to study their statistics across embryos. In Fig. 3F, we
quantify the area of mesendoderm precursor cells at the initial
time (Fig. 3 A, Center) that will finally form the PS. We identify
the solid black curve delimiting the area automatically from the
FTLE field, as described in SI Appendix, Fig. S6. The WT embryo
area is three times bigger than the treated one before 400 min,
which corresponds to the formation of repeller two. After that,
the WT area increases at a rate four times higher than before,
leading to a final area six times bigger than the FGF-treated
embryo.

In SI Appendix, Fig. S7, we show the same analysis of Fig. 3A
using the raw unfiltered velocity. We find that the DM is excep-

tionally robust to noise and measurement errors and is perfectly
computable without ad hoc filtering cell velocities.

Gastrulation in the Fly Embryo. Instead of focusing only on a spe-
cific morphogenetic feature, here, we analyze the early develop-
ment of the entire fly embryo. During gastrulation of Drosophila,
about 6,000 cells on the embryonic blastoderm on the embryo
surface undergo global morphogenetic flow, which induces
severe tissue deformation, finally giving rise to the three germ
layers. We compute the DM on an “ensemble-averaged” cell
velocity dataset from 22 WT Drosophila melanogaster embryos
undergoing gastrulation (33). Each velocity dataset was obtained
combining in toto light sheet microscopy (11, 12) and tissue
cartography (34) and consisted of coarse-grained velocities aver-
aged with a spatial window of ≈5 cell size. The velocity field is
given on 1,800 grid points over the fixed apical embryo surface
(SI Appendix, Fig. S1) and covers a time interval of 40 min with
a temporal resolution of 75 s, starting right after cephalic fur-
row (CF) formation. In SI Appendix, Methods, we provide the
formulas for computing FTLE induced by cell motion on curved
surfaces.

We computed the DM for a set of time scales |T | spaced every
5 min. Fig. 4A shows the FW FTLE40

0 in the WT embryo. The
diffuse high FTLE pattern on the lateral side marks the lateral
region that will undergo high stretching during germ-band exten-
sion (GBE) (compare with cell trajectories in Movie S7). The
D-pole repeller highlights a highly deforming area perpendicular
to AP, and the P-pole repeller marks a second region of distinct
high deformation during GBE. Fig. 4E shows the effect of the
dorsal repeller on nearby cells. We performed a detailed analysis
of the dorsal and posterior pole repellers in SI Appendix, Fig. S8
and show that FTLE provides an accurate time-scale-dependent
map of Lagrangian deformations and cell repulsion. Movie S5
shows the FW FTLE field for different T .
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Fig. 4. (A) The FW FTLE40
0 highlights two main repellers in the WT embryo. The FW FTLE evolution for different T is available as Movie S5. The FTLE

has unit min− 1, and the axis units are in micrometers. (B) The BW FTLE0
40 highlights the attracting LCSs in the WT embryo. B, Inset shows the VF from

an embryo image obtained by LSM. The time evolution of BW FTLE for different T is available as Movie S6. Movie S7 is the same as Movie S6 along
with the cells’ position in green. (C) Same as A for an ensemble-averaged TWI mutant embryo. Movie S8 shows the FW FTLE for different T . (D) Same
as B for an ensemble-averaged TWI mutant embryo. Movie S9 shows the BW FTLE for different T along with cell positions. (E) Effect of the ventral
repeller in A, Top on nearby cells (see SI Appendix, Fig. S8A for a detailed analysis). (F) Spatially averaged speed of WT and TWI ensemble-averaged
datasets. The gray area indicates the region of the analysis, and time 0 coincides with the first appearance of the cephalic furrow from LMS images.
(G) Lagrangian tissue deformation quantified as the spatially averaged

√
λ2 (blue). Red curves show the associated averaged anisotropic deformation

contributions.

Movie S6 shows the BW FTLE field for different T whose
last (T = 40) frame corresponds to Fig. 4B, and highlights
three main attractors. The ventral furrow (VF) attractor forms
around t = 10, the dorsal one around t = 20, and the U-shaped
attractor close to the P pole at t = 25, which demarcates the
posterior–lateral boundaries of the GBE. On the dorsal side,
Drosophila gastrulation is characterized by several transverse
structures, which include the already-formed CF, the ante-
rior and posterior folds, and the posterior midgut invagination.
Given the coarse-grained nature of the velocity field, struc-
tures whose width is smaller than five cell size cannot be fully
resolved. The combined effect of the anterior and posterior
folds, and the posterior midgut invagination, however, resulted
in the strong transverse dorsal attractor that slightly moved
from posterior to anterior, marking the dorsal boundary of the
GBE. Movie S7 shows the BW FTLE along with cells’ position,
confirming the role of the attractors and repellers in shaping
cell motion.

We performed the same analysis on an ensemble-averaged
dataset from seven twist (TWI) mutant embryos (33). Time 0 min
of WT and TWI datasets coincided with the first appearance
of the CF from LMS images. Fig. 4F shows the spatially aver-
age speed of the two datasets, and the gray box indicates the
time of our analysis when both WT and TWI velocities are avail-
able. Fig. 4 C and D show the same as Fig. 4 A and B for the
TWI dataset. Twist embryos lack the VF attractor, as expected,
and also show more diffused and weaker dorsal and posterior
pole attractors compared to WT (compare B and D). The dorsal
repeller is also significantly weaker and smaller than in the WT
(compare A and C, Middle). Interestingly, the TWI embryo has
two marked ventral repellers symmetric to the AP axis, which are
not present in the WT. These repellers mark regions of cell sep-

aration induced by shear deformations, as shown in SI Appendix,
Fig. S9. In Fig. 4G, we show that the overall tissue deformation,
quantified as described above, is ≈ 60% higher in the WT than
in the TWI embryo within the first 40 min from CF formation,
while the corresponding anisotropic deformation is the dominant
contribution (≥ 66%) in both. Although WT and TWI embryos
genetically differ only locally in the ventral region where twist is
expressed, such difference quickly induces global changes, which
are promptly captured by the DM that shows marked differences
also in the dorsal region. By contrast, the velocity field topol-
ogy looks similar in WT and TWI datasets (Movie S10), except
for the VF region during VF formation. We give a mathematical
explanation of this difference in SI Appendix, Methods C. These
results reaffirm that local morphogenetic changes can induce
global effects, which are precisely quantified by our approach.
Finally, comparing Movie S10 with Fig. 4 reinforces that the
DMs reveal the key organizers of cell motion and quantify tis-
sue deformations, both of which remain hidden to Eulerian
velocity plots.

Conclusions
Using only available kinematic data associated with cell trajec-
tories, we have provided a systematic kinematic framework for
analyzing morphogenetic flows to uncover the evolving center-
pieces of cell trajectory patterns, which we term the DM. The
DM is frame invariant and based on a Lagrangian description of
tissue deformation captured by the FTLE, which naturally com-
bines local and global mechanisms along cell paths. The DM is
composed of attracting and repelling LCSs toward which cells
converge, or diverge from, over a specific time scale. Of particu-
lar note is evidence not just for attracting regions, but repelling
regions that are just as important in determining cell fate. As
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aggregate measures, we have defined the overall Lagrangian tis-
sue deformation and the corresponding isotropic and anisotropic
fractions.

We have also shown that the DM provides information that
is inaccessible to existing methods, such as the velocity field
topology, simple inspection of cell trajectories, and deforming
Lagrangian grids. In the cases we have studied, the DM either
coincides with known morphogenetic structures and identifies
their early footprints or reveals new ones which invariably
shape trajectory patterns. In the chick PS formation, we have
found that already within 1 h from freshly laid egg, the DM
identifies the footprint of cells that will be part of the PS.
Additionally, we have found a repeller that separates the AP
cells within the PS and related it to gene expression patterns.
Overall, comparing their DM and aggregate deformation mea-
sures, we have found that our approach quantitatively distin-
guishes WT and pathological embryos in both chick and fly
morphogenesis.

Since the DM is driven solely by kinematic information, it
is computable from cell-motion data and is agnostic to the
mechanisms generating them. This is both an advantage and a

disadvantage—as it provides a framework to study the organiz-
ers of development, and yet does not shed light on their origin.
On the one hand, owing to its Lagrangian nature, we expect that
the DM can help to quantify the relative importance of coexist-
ing spatiotemporal mechanisms in morphogenesis. But to make
it even more powerful, a natural next step is to connect the DM
to known gene-expression patterns and mechanical processes, as
well as identify new ones by performing targeted experiments to
manipulate attractors and repellers.

Data Availability. The data and numerical codes are available
to individual researchers on request from the corresponding
author.
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1. Supplementary Movies

MovieS1 Time evolution movie associated with Fig. 1b.
MovieS2 PIV velocity field of the wild-type chick embryo overlaid over the experimental fluorescence images of the epiblast
surface.
MovieS3 Time evolution movie associated with Fig. 3a for different T . The lower panels show the averaged velocity field, the
evolution of a dense set of points, and the deformation of an initially uniform grid that moves with the flow.
MovieS4 Time evolution movie associated with Fig. 3d for different T .
MovieS5 Time evolution movie associated with Fig. 4a for different T .
MovieS6 Time evolution movie associated with Fig. 4b for different T .
MovieS7 Time evolution movie associated with Fig. 4b for different T along with cell positions in green.
MovieS8 Time evolution movie associated with Fig. 4c for different T .
MovieS9 Time evolution movie associated with Fig. 4d for different T along with cell positions in green.
MovieS10 Velocity fields of WT and TWI mutant fly embryos.
MovieS11 Time evolution movie associated with Fig. S5 for different T .
MovieS12 Time evolution movie associated with Fig. S6 for different T .
MovieS13 Time evolution movie associated with Fig. S7 for different T .
MovieS14 Time evolution movie associated with Figs. S8a.
MovieS15 Time evolution movie associated with Figs. S8d.
MovieS16 Time evolution movie associated with Figs. S9.

Supporting Information Text

2. Methods

A. FTLE computation on a flat planar domain. We recall fom the main text (Eq. (2)), that the FTLE is defined as

FTLEtt0 (x0) = 1
|T | ln

max
δx0

|

δxt︷ ︸︸ ︷
∇Ftt0 (x0)δx0 |
|δx0|

 = 1
2|T | ln (λ2(x0)) , Ct

t0 (x0) = [∇Ftt0 (x0)]>∇Ftt0 (x0), [1]

where λ2(x0) denotes the highest eigenvalue of the Cauchy–Green strain tensor Ct
t0(x0), and > matrix transposition. To

compute the FTLE, we first calculate the flow map

Ftt0 (x0) = x0 +
∫ t

t0

v(Fτt0 (x0), τ) dτ, [2]

which maps initial cell positions x0 at time t0 to their time−t position, by integrating the cell velocity field v(x, t) using the
MATLAB built-in Runge-Kutta solver ODE45 with absolute and relative tolerance of 10−6, linear interpolation in space and
time, and a uniform grid of initial conditions 16µm apart from each other in both directions.

Then, denoting the i − th component of the flow map Ftt0(x0) by xi(x1
0, x

2
0, t0, t), we compute the deformation gradient

∇Ftt0 (x0) using the finite-difference approximation (1)

∇Ftt0 (x0) ≈

[
x1(x1

0+δ,x2
0,t0,t)−x

1(x1
0−δ,x

2
0,t0,t)

2δ
x1(x1

0,x
2
0+δ,t0,t)−x1(x1

0,x
2
0−δ,t0,t)

2δ
x2(x1

0+δ,x2
0,t0,t)−x

2(x1
0−δ,x

2
0,t0,t)

2δ
x2(x1

0,x
2
0+δ,t0,t)−x2(x1

0,x
2
0−δ,t0,t)

2δ

]
, [3]

where δ = 16µm as the initial conditions’ grid spacing. After computing ∇Ftt0 (x0), we use eq. Eq. (1) for computing the FTLE
field.

B. FTLE computation on a curved surface. In the case of the Drosophila melanogaster dataset, the cell velocity field dx
dt

=
v(x, t) = [u(x, t), v(x, t), w(x, t)]> ∈ R3 is given on approximately 1800 points x = [x, y, z]> lying on the fixed apical embryo
surface S ⊂ R3, as illustrated in Fig. S1. We parametrize S in polar coordinates θ = [θ, ϕ]> ∈ S2 as

θ = g(x) =
[ arctan y

x

arcsin z√
x2+y2+z2

]
, x = h(θ) =

[
ρ(θ) cosϕ cos θ
ρ(θ) cosϕ sin θ
ρ(θ) sinϕ

]
, [4]

where ρ(θ) is a cubic interpolant function that provides the distance of points on the embryo surface from the origin. The
parametrization of any surface topologically equivalent to a two-dimensional sphere is known to possess singularities (cf.
Eq. (4)). Indeed g is not defined at the dorsal (D) and ventral (V) poles. Therefore, we define a second parametrization, which
has singularities at the anterior (A) and posterior (P) poles. Together, these two charts allow us to parametrize the embryo
surface completely.
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θ = g(x)

Fig. S1. Polar coordinates θ = [θ, ϕ]> ∈ S2 parametrization of a Drosophila embryo apical surface given as a triangulated set of points x = [x, y, z]> ∈ S ⊂ R3. The
points A,P,D and V mark the locations of the Anterior, Posterior, Dorsal and Ventral poles.

To compute cell trajectories, we have devised an in-house MATLAB code that integrates cell velocities over the triangulated
surface using a Runge Kutta 4th order method. We ensure that trajectories remain on S by projecting current cell positions on
S at each time step. We now define the Lagrangian flow map that maps an initial condition x0, parametrized by θ, to its final
position as

xt︷ ︸︸ ︷
Ftt0 (h(θ)) =

x0︷︸︸︷
h(θ) +

∫ t

t0

v(Fτt0 (h(θ)), τ) dτ. [5]

From the Taylor expansion of the Lagrangian flow map with respect to θ, we obtain that

δxt︷ ︸︸ ︷
Ftt0 (h(θ + δθ))− Ftt0 (h(θ)) ≈ ∇θ[Ftt0 (h(θ))]δθ. [6]

Using Eqs. (1,6), we rewrite the FTLE in the case of motion on curved surfaces as

FTLEtt0 (θ) = 1
|T | ln

(
max
δθ

|∇θ[Ftt0 (h(θ))]δθ|
|∇θh(θ)δθ|

)
= 1
|T | ln

(
max
δθ

√
〈δθ, (∇θ[Ftt0 (h(θ))])>(∇θ[Ftt0 (h(θ))])δθ〉

〈δθ, [∇θh(θ)]>[∇θh(θ)]δθ〉

)
,

[7]

where 〈, 〉 denotes the dot product. Using the relations in Eq. (5), we note that ∇θ[Ftt0 (h(θ))] is simply the Jacobian of the 3D
Flow map, whose i− th component is xi(ϕ, θ, t0, t), with respect to θ = [ϕ, θ], and hence can be computed by finite differencing
as described in Eq. (3). Similarly, [∇θh(θ)] is the Jacobian of the 3D Flow map evaluated at t = t0 with respect to θ, and can
be computed either as in Eq. (3) or by explicitly using the form of the parametrization in Eq. (4) as

∇θh(θ) =

[
∂θρ(θ) cosϕ cos θ − ρ(θ) cosϕ sin θ ∂ϕρ(θ) cosϕ cos θ − ρ(θ) sinϕ cos θ
∂θρ(θ) cosϕ sin θ + ρ(θ) cosϕ cos θ ∂ϕρ(θ) cosϕ sin θ − ρ(θ) sinϕ sin θ

∂θρ(θ) sinϕ ∂ϕρ(θ) sinϕ+ ρ(θ) cosϕ

]
, [8]

where ∂ϕρ(θ), ∂θρ(θ) need to be computed by finite differencing. The symmetric tensor G(θ) = [∇θh(θ)]>[∇θh(θ)] is the
metric tensor of the embryo surface at point h(θ). We illustrate Eqs. (5-7) in Fig. S2.

Fig. S2. Time evolution of the relative position vector δxt between two initially close cells on the embryo surface as a function of polar coordinates (cf. Eqs. (5-6)).
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In our analysis, we define a uniform grid of initial conditions θ spaced by 1 deg., compute 3D trajectories as described
above, and the Jacobian matrices in Eq. (7) using finite differencing with step size δ = 1deg.. Finally, we parameterize
δθ = [cosα, sinα]> and compute Eq. (7) numerically using a vector of possible α from 0 to 2π spaced by 1deg..

C. Eulerian and Lagrangian assessment of tissue deformations. We recall a known relation (see e.g. (2) for derivation) between
the Eulerian rate of strain tensor, broadly used for studying deformations in morphogenesis, and the Lagrangian Cauchy-Green
tensor. √

〈δx0,Ct
t0 (x0)δx0〉

〈δx0, δx0〉
= |δxt||δx0|

= Exp
[∫ t

t0

〈∇Fτt0 (x0)δx0,S(Fτt0 (x0), τ)∇Fτt0 (x0)δx0〉
〈∇Fτt0 (x0)δx0,∇Fτt0 (x0)δx0〉

dτ

]
[9]

To gain a better intuition of the differences between an Eulerian assessment of deformation encoded in S, and the corresponding
Lagrangian (i.e. with memory) one, we consider two velocity fields one multiple of each other ṽ(x, t) = cv(x, t). The
corresponding rate of strain tensors are related by S̃(x, t) = cS(x, t), hence having the same eigenvectors and topology
of the eigenvalues. By contrast, the Lagrangian deformation encoded in Ct

t0(x0) will have different spatial structures for
a fix [t0, t] in these two systems because cell paths in the modified flow F̃tt0(x0) = x0 + c

∫ t
t0

v(F̃τt0(x0), τ) dτ will visit
different points compared to the original one (Eq. (2)). A similar reason holds for the associated deformation gradient
∇̃Ftt0(x0) = I + c

∫ t
t0
∇v(F̃τt0(x0), τ)∇̃Fτt0(x0) dτ . These simple relations highlight that both uniform as well as localized

changes of tissue flows can lead to global changes, which can be detected by Lagrangian methods while remaining inaccessible
to Eulerian ones.

D. Isotropic and anisotropic contribution to Lagrangian attraction. We recall that attracting LCSs, captured by the backward
FTLE, can occur because of isotropic contraction or anisotropic deformation, as described in the main text. We denote by
|δx>t | = |δx0|+ ∆I + ∆A the final distance of two particles initially distant |δx0|, where ∆I ,∆A denote the distance change due
to isotropic and anisotropic deformations. The isotropic area shrinkage induced by Ftt0 (x0) on an infinitesimal patch centered
at x0 can be computed as

At(x0)
A0(x0) =

√
det Ct

t0 (x0), t < t0, [10]

and induces particle convergence in forward time, as illustrated and quantified in Fig. S3 (Center). This scalar field is based
at the final configuration x0 and integrates information over the time interval [t, t0]. It attains values greater than unity in
regions where initially far trajectories converge because of isotropic contraction, and is less than unity in regions where initially
close trajectories diverge due to isotropic expansion. We compute the convergence due to anisotropic deformation as the total
convergence minus the one from isotropic shrinkage (Fig. S3 Right). Using the expressions in Fig. S3, we define the percentage

Fig. S3. (Left) Backward FTLE ridge as in Fig. 2b. The BW FTLE is a rescaled form of the maximum convergence achieved by two initially distant particles in forward time.
(Center) Particles convergence induced by isotropic area contraction quantified by eq. Eq. (10). (Right) Particles convergence due to area preserving anisotropic deformation.

of Lagrangian attraction due to anisotropic deformation as

%An.Def.tt0 (x0) = ∆A

|∆I |+ ∆A
% =

( √
λ2(x0)− 4

√
det Ct

t0 (x0)

| 4
√

det Ct
t0 (x0)− 1|+

√
λ2(x0)− 4

√
det Ct

t0 (x0)

)
100, t < t0, [11]

which completely characterize the Lagrangian cell convergence. Because det Ct
t0(x0) = λ1(x0)λ2(x0) and λ1(x0) ≤ λ2(x0)

by definition, it follows that ∆A ≥ 0. Note that if the cell velocity field is incompressible (∇ · v = 0), by Liouville’s formula
(3) det Ct

t0(x0) = 1, and %An.Def.tt0(x0) = 100 as all the attraction is caused by anisotropic deformations. Conversely,
if anisotropic deformations are absent, an initially circular patch remains circular, hence the two eigenvalues of Ct

t0(x0)
characterizing the deformed ellipse semi axes are identical λ2(x0) = λ1(x0) = λ(x0). Therefore, it follows that 4

√
det Ct

t0 (x0) =
4
√
λ2(x0)λ1(x0) = 4

√
λ2(x0) =

√
λ(x0), which makes %An.Def.tt0 (x0) = 0, as desired.
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3. Chordin and Wnt8C expression patterns during primitive streak formation in chicken embryo

Fig. S4. Chordin and Wnt8C expression patterns in pre and gastrulation stage chick embryos. Embryos were fixed at different stages (EGK-XIII, HH2 and HH4) of development
and RNA expression detected using standard in-situ hybridisation procedures (4). Both Chordin and Wnt8c are initially expressed in a sickle shape region in the posterior chick
epiblast, followed by their separation during streak extension. Chordin is expressed in the anterior streak, while Wnt8c is expressed in the posterior streak and the mesoderm
cells that migrate from out of the posterior streak. White scale bar 0.5mm.

4. Lagrangian deformation types behind primitive streak formation in chicken embryo

Fig. S5. (First) BW FTLE of the wild-type chick embryo corresponding to |T | = 2h shortly after egg laying (stage EKG XII), whose high values demarcates the forming PS.
(Second) Isotropic Lagrangian attraction field (quantified Fig. S3 Center) rescaled by the logarithm and normalized by |T |, as in the FTLE definition. (Third) Eulerian velocity
field divergence. The first three scalar fields are in min−1. (Fourth) %An.Def.tt0 (x0) field defined in Eq. (11). Movie S11 shows the full evolution of the above scalar
fields for different T , along with cells position (green).

The first panel of Fig. S5 shows the BW FTLE and cell positions corresponding to |T | = 2h for the chick wild-type embryo
analyzed in Fig. 3(a). The second panel shows the Lagrangian Isotropic attraction rescaled by the logarithm and normalized
by |T |, as in the FTLE definition. The high BWFTLE value region, capturing the forming PS, is completely hidden in the
Isotropic attraction field, which attains higher values in the middle of the domain. The forming PS is also completely hidden
to the velocity divergence field (third panel), which is the instantaneous version (T → 0) of the Lagrangian area shrinkage
in the second panel, and whose negative values demarcate regions characterized by instantaneous isotropic contraction. The
right panel shows the %An.Def. field defined in eq. Eq. (11) highlighting that the high BW FTLE region in the First panel is
mainly (≥ 80%) due to anisotropic deformation. Movie S11 shows the time evolution of Fig. S5 for different T , and indicates
that cell convergence giving rise to the PS is always dominated by anisotropic tissue deformation.
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5. Morphogenetic features extraction from the FTLE field

Fig. S6. Same scalar fields as in Fig. 3(a) smoothed with an average filter of window size 3x3. (Left) FW FTLE field. (Center) BWFTLE passively transported at the initial time.
The solid black line is a level set of the BWFTLE field delimiting the area of cells that will form the PS at their initial positions. The level set value is automatically selected
evaluating the BWFTLE along the dashed black segment (from bottom to top) and detecting the value at which the derivative is minimal. (Right) BWFTLE based at the final time.
The solid black curve is the BWFTLE level set corresponding to the value identified in the center panel. Movie S12 shows the full evolution of the above scalar fields for different
T . We compute the area enclosed by the black solid line in the center panel by using an in-built MATLAB function.

6. Dynamic Morphoskeletons behind primitive streak formation in chicken embryo using unfiltered velocity data

While filtering velocities is necessary for Eulerian methods, owing to their sensitivity to noise and measurement errors, it
may hide finer-scale structures whose characteristic sizes are smaller than the filtering window sizes. By contrast, Lagrangian
methods are intrinsically more robust because the integration of cell velocities along trajectories acts like a filter.

Fig. S7. Same scalar fields as in Fig 3a, computed from raw (unfiltered) velocity data. (Left) FW FTLE corresponding to the full extent of the dataset (|T | = 12h from the
freshly laid egg stage), whose high values demarcates two repelling LCSs as described in in Fig 3a. (Right) BW FTLE corresponding to the full extent of the dataset whose
strong ridge highlights the attracting LCS corresponding to the formed PS. Cells position at 12h, initialized from a uniform gird at 0h, are shown by green dots. White areas
correspond to regions where the FTLE is unavailable because trajectories left the domain over which the velocity field is defined. (Center) BW FTLE shown in (Right) passively
transported by F 0

720 shows the initial cell positions that will finally form the PS. The FTLE has unit min− 1, the axis units are in µm and the posterior anterior direction goes
from smaller to larger y values. Movie S13 shows the full time evolution of BW and FW FTLE for different T , along with cells position.
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7. Drosophila Melanogaster WT: dorsal and posterior pole repellers
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Fig. S8. (a-c) Dorsal repeller in the WT drosophila dataset illustrated in Figs. 4a,e. (a) Initial cell positions placed across the dorsal repeller color-coded by increasing values of
α. (b) Left: dorsal view of the initial cell positions shown in (a) along with the corresponding FTLE40

0 field encoded in the colorbar. Right: final cell positions. Movie S14 shows
cell positions over time. (c) Center: Kymograph of x−averaged angular position < α >x (t) for the color-coded rows of points shown in (a,b). Top: x−averaged angular
distance < ∆α >x (t = 40) between consecutive rows of points (see panel b) graphed over < α >x (t = 40). Bottom: x−averaged angular distance (blue) between
consecutive rows of points graphed over < α >x (t = 0). The red curve shows the x−averaged FTLE40

0 in correspondence of the initial grid of cells (panel b) for different
values of α. (d) Same analysis of (b) for the posterior pole repeller in the WT drosophila dataset shown in Fig. 4a along with cell velocity field in blue. Movie S15 shows the time
evolution of cell positions and velocities. The FTLE has unit min− 1, and the Cartesian axis units are in µm.

Figures S8a-c illustrate the influence of the dorsal repeller in the WT drosophila dataset (cf. Figs. 4a,e). We place a set of
cells across the dorsal repeller color-coded by increasing values of α (a). We show the initial and final cell positions in (b)
along with a movie with intermediate time steps (Movie S14). The scalar field in the left panel encodes FTLE40

0 . Using a
kymograph, we plot the tissue deformation across the repeller in (c) center. For each color-coded row of points, we compute
the x−averaged angular position < α >x (t). In the top panel, we show the x−averaged angular distance < ∆α >x (t = 40)
between consecutive rows of points (see panel b) graphed over < α >x (t = 40). We graph the same quantity in the bottom
panel over < α >x (t = 0) (blue curve) along with the x−averaged FTLE40

0 (red curve) in correspondence of the initial grid of
cells (panel b) for different values of α. Although the FTLE ridge is diffuse, peaks of < FTLE40

0 >x accurately predict embryo
regions that will undergo the highest stretching.

To check tissue deformations from the FTLE, we note that for α ≈ π/2, < FTLE40
0 >x≈ 0.027, which implies a stretching√

λ2 ≈ 2.9. For the rows of points starting at α ≈ π/2, < ∆α >x (t = 40) ≈ 0.15. Assuming only deformation along α,
from the relative displacement of cells

√
λ2 ≈ R∆α(t=40)

R∆α(t=0) = 0.15
3π/180 ≈ 2.9, where we used that R ≈ 50µm (panel a) remains

constant between initial and final cell positions, and that the initial α spacing of cell rows is 3 deg.. This confirms that the
FWFTLE marks regions of distinct repulsion as well as quantifies areas of maximum tissue deformation over a desired T . This
characterization, by contrast, remains hidden to Eulerian methods and cell trajectory plots.

Figure S8b shows the same analysis of panel (b) for the posterior pole repeller in the WT drosophila dataset shown in Fig.
4a along with the cell velocity field in blue. During GBE, the repeller highlights the precise region of distinct cell separation
(and tissue deformation), which is confirmed by the relative motion of color-coded cells. Specifically, the color-coded rows
of cells that start within the repeller undergo visibly higher separation compared to the nearby rows. Movie S15 shows the
corresponding time evolution of cell positions, further illustrating that the Lagrangian repeller is inaccessible to Eulerian
velocity plots.
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8. Drosophila Melanogaster TWI: ventral repellers

Fig. S9. Left: FWFTLE40
0 shows two ventral repellers in the TWI drosophila dataset. Dots indicate initial cell positions color-coded for increasing values of α, as in Fig. S8a.

Right: final cell positions confirm that cells across the repellers undergo high separation induced by shear deformations. Movie S16 shows cell positions over time. The FTLE
has unit min− 1, and the Cartesian axis units are in µm.
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