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We develop a frame-invariant theory of material spike formation during flow separation
over a no-slip boundary in three-dimensional flows with arbitrary time dependence. Based
on the exact evolution of the largest principal curvature on near-wall material surfaces,
our theory identifies fixed and moving separation. Our approach is effective over short
time intervals and admits an instantaneous limit. As a byproduct, we derive explicit
formulas for the evolution of the Weingarten map and the principal curvatures of any
surface advected by general three-dimensional flows. The material backbone we identify
acts first as a precursor and later as the centrepiece of Lagrangian flow separation. We
discover previously undetected spiking points and curves where the separation backbones
connect to the boundary and provide wall-based analytical formulas for their locations. We
illustrate our results on several steady and unsteady flows.
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1. Introduction

Fluid flow separation is generally regarded as fluid detachment from a no-slip boundary.
It is the root cause of several complex flow phenomena, such as vortex formation, wake
flow and stall, which typically reduce engineering flow devices’ performance. For a recent
survey of existing literature, we refer to (Melius, Cal & Mulleners 2016; Melius, Mulleners
& Cal 2018; Serra, Vétel & Haller 2018; Le Fouest, Deparday & Mulleners 2021; Deparday
et al. 2022; Sudharsan, Ganapathysubramanian & Sharma 2022) and references therein,
which include (Prandtl 1904; Sears & Telionis 1971, 1975; Liu & Wan 1985; Haller 2004;
Surana et al. 2008; Wu, Ma & Zhou 2015). Three-dimensional (3-D) flow separation is
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Figure 1. (a) Streamlines of a steady 2-D flow analysed in detail in Serra et al. (2018). The green dot represents
the zero skin friction or Prandtl separation point. (b) Zoom of (a) in the region enclosed by the bottom right
rectangle, along with the evolution of the spike visualized through the advection of material lines shown in
black. (c) Backbone of separation (red curve) as defined in Serra et al. (2018), along with the streamlines
(blue), and material lines initially parallel to the wall (black). The red dot marks the spiking point, where the
backbone connects to the wall. The time evolution of the material spike is in supplementary movie 1.

challenging to analyse and visualize, and it has been subject to numerous studies since the
mid-1950s. Inspired by dynamical systems studies by Poincaré, Legendre (1956); Délery
(2001) and Lighthill (1963) pioneered 3-D flow separation research. Several methods
followed after these seminal works (Tobak & Peake 1982; Simpson 1996; Wu et al. 2000).
Years later, Haller and co-workers (Surana, Grunberg & Haller 2006; Jacobs et al. 2007;
Surana, Jacobs & Haller 2007; Surana et al. 2008) derived an exact theory of asymptotic
3-D separation in steady flows and unsteady flows with an asymptotic mean.

Existing techniques invariably focus on the longer-term particle dynamics, as opposed
to the appearance of separation triggered by the formation of a material spike, i.e. a
sharp-shaped set of fluid particles ejected from the wall. Several of these techniques rely on
the notion of Lagrangian coherent structures (Haller 2015) and their applications (Green,
Rowley & Haller 2007; Wilson, Tutkun & Cal 2013). However, the long-term behaviour
in material deformation and transport is significantly different from the short-term one,
which is the most relevant for early flow separation detection and control. To illustrate
the difference between short-term material spikes and longer-term material ejection,
figure 1(a,b) shows the evolution of material lines initially close to the wall in a steady
2-D flow analysed in detail in Serra et al. (2018). While fluid particles released within
the black box in (a) approach asymptotically the singular streamline (unstable manifold)
emanating from the Prandtl point p, the birth of a material spike takes place at a different
upstream location. Serra et al. (2018) derived a theoretical framework to identify such a
location, named the spiking point sp, as well as the backbone of separation (red curve)
that acts as the centrepiece of the forming spike (cf. figure 1(c) and supplementary movie
1 available at https://doi.org/10.1017/jfm.2023.559) for general unsteady 2-D flows. This
recent technique has proven successful in identifying the onset of flow separation in highly
unsteady planar flows (Serra et al. 2020) including the flow over a wing profile at moderate
Reynolds number (Klose, Serra & Jacobs 2020b).

Identifying separating structures is arguably a necessary first step in the design of flow
control mechanisms (Greenblatt & Wygnanski 2000; You & Moin 2008) that can mitigate
the upwelling and breakaway from walls. Common control strategies target the asymptotic
separation structures either passively (Schlichting & Gersten 2000) or actively (Cattafesta
& Sheplak 2011). Recent efforts include optimal flow control using dynamic modes
decomposition (Hemati et al. 2016; Taira et al. 2017) and resolvent analysis (Yeh & Taira
2019). None of these studies, however, explicitly control spiking, and most importantly,
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Figure 2. (a) We denote the initial position of a 2-D material surface in a 3-D space by M(t0). Points on the
surface have coordinates r( p), where p contains the two independent parameters. At later times, points on the
material surface M(t) = F t

t0 (M(t0)) have coordinates r̂t
t0 ( p). At each point r( p) of M(t), r̂u, r̂v are basis

vectors for the local tangent space, nt is the local normal vector, κ1 and κ2 are the principal curvatures and ζ 1
and ζ 2 are the principal curvature directions (inset). (b) Sketch of possible separating spikes in 3-D flows from
a no-slip boundary: 2-D backbone where κ2 > κ1 or a 1-D backbone where κ2 ≈ κ1. (c) We define a coordinate
system with [u, v] parameterizing the no-slip boundary W and η the coordinate normal to the boundary. We
define a spiking curve γsc and spiking point rsp, as the intersection – when present – of the 2-D backbone and
1-D backbone to the no-slip boundary.

they target Prandtl’s definition of separation. Using the asymptotic separation criterion
from Haller (2004), Kamphuis et al. (2018) showed that a pulsed actuation upstream
of Haller’s separation criterion reduces drag. Interestingly, Bhattacharjee et al. (2020)
showed that the optimal actuator place to mitigate separation is upstream of the asymptotic
separation point on an airfoil, consistent with the spiking point location (Klose et al.
2020b). A 3-D theory to locate and control the material spike formation universally
observed in separation experiments is still missing.

Building on Serra et al. (2018), here, we propose a frame-invariant theory that identifies
the origin of spike formation over a no-slip boundary in 3-D flows with arbitrary time
dependence. Our technique identifies the Lagrangian centrepieces – or backbone lines
and surfaces (figure 2b,c) – of separation and is also effective over short times, which
are inaccessible by previous methods. Our theory is based on explicit formulas for
the Lagrangian evolution of the largest principal curvature of material surfaces. The
emergence of the largest principal curvature maxima (or ridge) near the boundary locates
the onset of spike formation, its dimension (1-D or 2-D backbones, cf. figure 2b,c) and
type. Specifically, we speak of fixed separation if the ridge emanates from the wall.
Otherwise, it is a moving separation. For fixed separation, our theory discovers previously
undocumented spiking points rsp and spiking curves γsc, which are distinct locations where
the 1-D and 2-D backbones connect to the wall. We provide explicit formulas for the
spiking points and curves using wall-based quantities. Remarkably, the spiking points and
curves remain hidden from classic skin-friction line plots even in steady flows, consistent
with the 2-D case (figure 1).

This paper is organized as follows. We first develop our theoretical results in §§ 2–5.
Then we give an algorithmic summary of our theory in § 6. In § 7, we illustrate our results
on several examples, including steady and unsteady velocity fields that generate different
flow separation structures over no-slip boundaries.
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2. Set-up and notation

We consider a 3-D unsteady smooth velocity field f (x, t) on a 3-D domain U, whose
trajectories satisfy

ẋ(t) = f (x, t), f = [ f1, f2, f3]�, x = [x1, x2, x3]� ∈ U ⊂ R
3, x(t = 0) = x0.

(2.1a–d)

We recall the customary velocity Jacobian decomposition

∇f (x, t) = S(x, t) + Ω(x, t), S = 1
2(∇f + ∇f �), (2.2)

where S and Ω denote the rate-of-strain and spin tensors. Trajectories x(t; t0, x0) of
(2.1a–d) define the flow map F t

t0(x0) and the corresponding right Cauchy–Green strain
tensor C t

t0(x0) that can be computed as

F t
t0(x0) = x0 +

∫ t

t0
f (F τ

t0(x0), τ ) dτ, C t
t0(x0) = [∇x0F t

t0(x0)]�∇x0F t
t0(x0). (2.3a,b)

Here, F t
t0(x0) maps an initial condition x0 at time t0 to its position xt at time t, and C t

t0(x0)
encodes Lagrangian stretching and shearing deformations of an infinitesimal material
volume in the neighbourhood of x0.

3. Curvature evolution of a material surface

To derive explicit formulas for the curvature evolution of a 2-D material surface M(t), we
define the following parametrization (figure 2):

M(t0) = {x0 ∈ U : x0 = r( p), p = [u, v]� ∈ V = [u1, u2] × [v1, v2] ⊂ R
2},

M(t) = F t
t0(M(t0)) = {xt ∈ U : xt = r̂t

t0( p) = F t
t0(r( p)), p ∈ V}.

}
(3.1)

In other words, p contains the two independent variables that uniquely specify an initial
point of the material surface r( p). The coordinates of this point at time t, are given by
F t

t0(r( p)), or alternatively, in compact notation, by r̂t
t0( p).

At each point r̂t
t0( p) on the surface, the vectors ∂ur̂t

t0, ∂v r̂t
t0 define a basis for the local

tangent space at r̂t
t0( p). For compactness, we will denote these vectors ru, rv at t0 and

r̂u, r̂v at t. We can now compute a local basis for the local tangent and normal spaces at
r̂t

t0( p) as

r̂u = ∇x0F t
t0(r( p))ru, r̂v = ∇x0F t

t0(r( p))rv, nt = r̂u × r̂v/|r̂u × r̂v|, (3.2a–c)

where ×, |(·)| denote the cross-product and the vector norm, and nt the unit vector normal
to the surface.

The Weingarten map quantifies the surface curvature in different directions, and can
be computed as W t

t0( p) = (1Γ
t
t0( p))−1

2Γ
t
t0( p), where 1Γ and 2Γ are the first and

second fundamental forms (e.g. Kuhnel & Hunt (2015) and Appendix A). The eigenvalues
2kt

t0( p) ≥ 1kt
t0( p) of W t

t0( p) characterize the principal curvatures at r̂t
t0( p) along the

corresponding principal curvature directions ζ1 and ζ2, identified by the eigenvectors of
W (figure 2a). As a result, the time evolution of W fully characterizes the curvatures of
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M(t). The Weingarten map of M(t0) is W t0 = W t0
t0( p) and can be computed as

W t0 = (1Γ t0( p))−1
2Γ t0( p), 1Γ t0( p) =

(〈ru, ru〉 〈ru, rv〉
〈rv, ru〉 〈rv, rv〉

)
,

2Γ t0( p) =
(〈nt0, ruu〉 〈nt0, ruv〉

〈nt0, rvu〉 〈nt0, rvv〉
)

⎫⎪⎪⎬⎪⎪⎭ , (3.3)

with 〈, 〉 denoting the dot product and ruv = ∂uvr. To understand how a velocity field
(2.1a–d) folds a material surface, we derive the exact map and the underlying matrix
differential equation for W t

t0( p), as summarized in the following theorem.

THEOREM 1. Consider a smooth material surface M(t) ⊂ U ⊆ R
3 parametrized at t0

in the form r( p), p = [u, v]� ∈ [u1, u2] × [v1, v2] = V ⊂ R
2, and whose tangent space is

spanned by ru( p) and rv( p). The evolution of the Weingarten map W t
t0( p) of M(t) under

the action of the flow map can be computed as

W t
t0( p) = (1Γ

t
t0( p))−1

1Γ t0( p)
Jt0( p)det(∇F t

t0(r( p)))

Jt
t0( p)

W t0︸ ︷︷ ︸
W I

+ (1Γ
t
t0( p))−1Bt

t0( p)︸ ︷︷ ︸
W II

,

(3.4)
where

Bt
t0( p) =

(
〈nt, ∇2F t

t0(r( p))ruru〉 〈nt, ∇2F t
t0(r( p))rurv〉

〈nt, ∇2F t
t0(r( p))rvru〉 〈nt, ∇2F t

t0(r( p))rvrv〉

)
, (3.5)

where [∇2F t
t0(r( p)rurv]i = [∇2F t

t0(r)ru]ij[rv]j = 〈∇[∇F t
t0(r)]ij, ru〉[rv]j, Jt

t0( p) =√
det(1Γ

t
t0( p)) and Jt0( p) = √

det(1Γ t0( p)). Here [∇2F t
t0(r)ru]ij represents the

directional derivatives of [∇F t
t0(r)]ij in the direction ru. We use the same notation in (3.8)

and (3.9). The rate of change of the Weingarten map at t0 is given by

Ẇ t0( p) =
[(

∇ · f (r( p), t0) − 3αt0( p)

J2
t0( p)

)
I + 2D(p, t0)1Γ t0( p)

J2
t0( p)

]
W t0︸ ︷︷ ︸

Ẇ I

+ (1Γ t0( p))−1M(p, t0)︸ ︷︷ ︸
Ẇ II

+ (1Γ t0(p))−1N t0︸ ︷︷ ︸
Ẇ III

, (3.6)

where αt0( p) = 〈ru, S(r( p), t0)ru〉〈rv, rv〉 + 〈rv, S(r( p), t0)rv〉〈ru, ru〉 − 2〈ru, S(r( p),

t0)rv〉〈ru, rv〉, I is the identity matrix of rank 2,

D(p, t0) =
( 〈rv, S(r( p), t0)rv〉 −〈ru, S(r( p), t0)rv〉

−〈ru, S(r( p), t0)rv〉 〈ru, S(r( p), t0)ru〉
)

, (3.7)

M(p, t0) =
(〈nt0, ∇S(r( p), t0)ruru〉 〈nt0, ∇S(r( p), t0)rurv〉

〈nt0, ∇S(r( p), t0)rvru〉 〈nt0, ∇S(r( p), t0)rvrv〉
)

, (3.8)

N(p, t0) =
(〈nt0, ∇Ω(r( p), t0)ruru〉 〈nt0, ∇Ω(r( p), t0)rurv〉

〈nt0, ∇Ω(r( p), t0)rvru〉 〈nt0, ∇Ω(r( p), t0)rvrv〉
)

. (3.9)
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Proof . See Appendices A and B. �

The term W I in (3.4) describes the contribution to material folding induced by the flow
if M(t0) has non-zero initial curvature W t0 while W II folds M(t) regardless of W t0 . In
W I , Jt

t0( p) relates the area element (dA) of M(t) to the area element (du dv) at p by dA =
Jt

t0( p) du dv, det(∇F t
t0(r( p)) accounts for volume changes and the first fundamental form

1Γ t0( p) accounts for the shape of M(t0). In W II , Bt
t0( p) accounts for the folding of M(t)

described by second spatial derivatives of F t
t0 . In the short-time limit, (3.6) quantifies the

rate of change of W t
t0( p) at t0, and elucidates which flow features contribute to the folding

rate of Mt0 . Specifically, Ẇ I) encodes the compressibility of f (∇ · f ), the stretching
rate along Mt0 (αt0( p) and D(p, t0)) and the metric properties (1Γt0( p)), weighted by its
current curvature W t0 ; Ẇ II) accounts for spatial variations of the stretching rates on Mt0
encoded in ∇S; and Ẇ III) accounts for spatial variations of rigid-body rotation rates on
Mt0 encoded in ∇Ω . Equations (3.4) and (3.6) have the same functional form as their 2-D
analogues in Serra et al. (2018) describing the folding of material curves, with the tensor
W t

t0 replacing the scalar curvature κ t
t0 .

Theorem 1 shows that the Lagrangian folding and the Eulerian folding rate of a material
surface are caused by stretching- and rotation-based quantities. In Appendix C, we show
that W t

t0( p) and Ẇ t
t0( p) are invariant with respect to changes in the parametrization

r( p) and time-dependent rotations and translations of the coordinate frame. Remarkably,
although the spin tensor Ω is not objective, its spatial variations contributing to folding
(cf. (3.9)) is objective, similar to the 2-D case (Serra et al. 2018). We summarize these
results as follows.

PROPOSITION 1. Denote all Euclidean coordinate changes by

x̃ = Q(t)x + b(t), (3.10)

where Q(t) ∈ SO(3) and b(t) ∈ R
3 are smooth functions of time. Here, W t

t0( p) and
Ẇ t

t0( p) are independent of the parametrization r( p) (3.1) and invariant under the

coordinate changes in (3.10). Invariance here means W̃ t
t0( p) = W t

t0( p) and ˜̇W t( p) =
Ẇ t( p), where (̃·) denotes quantities expressed as a function of the x̃-coordinate, and (·)
the same quantity expressed in terms of x-coordinate.

Proof . See Appendix C. �

We note that the invariance of material folding in Proposition 1 is stronger than
objectivity (Truesdell & Noll 2004), which is required in the continuum mechanics
assessment of material response and the definitions of Lagrangian and Eulerian coherent
structures (Haller 2015; Serra & Haller 2016).

4. The Lagrangian backbone of flow separation

The onset of fluid flow separation is characterized by a distinctly folded material spike
that will later separate from the boundary surface, similar to the spike formation in 2-D
flows (figure 1). In three dimensions, however, the Lagrangian backbone of separation
– i.e. the centrepiece of the material spike – can be one-dimensional (codimension
2) or two-dimensional (codimension 1). A 1-D backbone marks an approximately
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symmetric spike. In contrast, a 2-D backbone marks a ridge-like spike where folding
perpendicular to the ridge is higher than the one along the ridge (cf. figure 2b).

Equipped with the exact expressions from § 3, we proceed with the definition and
identification of the Lagrangian backbone of separation in three dimensions. We first
define the Lagrangian change and the Eulerian rate of change of the Weingarten map
as

W̄ t
t0( p) = W t

t0( p) − W t0( p), ˙̄W t0( p) = Ẇ t0( p), (4.1a,b)

which quantify the finite-time folding and instantaneous folding rates induced by the flow
on M(t). We denote the eigenvalues of W̄ t

t0( p) by 1κ̄
t
t0( p) ≤ 2κ̄

t
t0( p) and the associated

eigenvectors by ζ̄ 1, ζ̄ 2. Here, 2κ̄
t
t0( p) quantifies the highest curvature change, i.e. the

folding induced by F t
t0 , at r( p). By selecting normal vectors pointing towards the no-slip

boundary, positive eigenvalues of W̄ t
t0( p) mark upwelling-type deformations.

As aggregate curvature measures described by W̄ t
t0( p), we denote the Gaussian

curvature change by K̄t
t0( p) = det[W̄ t

t0( p)] = 1κ̄
t
t0( p)2κ̄

t
t0( p) and the mean curvature

change by H̄t
t0( p) = Trace[W̄ t

t0( p)]/2 = (1κ̄
t
t0( p) + 2κ̄

t
t0( p))/2. For compactness, we

may denote the principal curvature changes also by κ̄1, κ̄2, the Gaussian curvature change
by K̄ and the mean curvature change by H̄. We note that the Gaussian curvature K̄ is
not a good metric to characterize the Lagrangian spike formation because in the case
of flat (or approximately flat) 2-D separation ridges (e.g. figure 3), K̄ ≈ 0 on the ridge.
Similarly, the mean curvature change H̄ is not a good metric for separation as in the case
of hyperbolic-type upwelling deformations, i.e. when K̄ < 0, H̄ can vanish on points along
the separation backbone (e.g. figure 4).

We observe that for either 1-D or 2-D separation backbones, high values of κ̄2 mark
the material spike location. For the 2-D separation backbone, κ̄2 is maximum along the
principal direction ζ̄ 2 (figure 2a,b). In the 1-D separation backbones, however, κ̄2 ∼= κ̄1
and ζ̄ 1, ζ̄ 2 are not defined (figure 2a,b). In this symmetric case, maxima of κ̄2 mark the
separation backbone. To express this coherence principle mathematically, we consider a
general curved no-slip boundary (figure 2c) and a set – mathematically, a foliation – of
wall-parallel material surfaces at t0 parametrized by rη( p), η ∈ [0, η1], η1 ∈ R

+, where
the boundary is defined as

W := {rη( p) ⊂ R
3, p ∈ V, η = 0}. (4.2)

We denote the largest principal curvature change along each layer (η = const.) as 2κ̄η, the
Weingarten map change as W̄ η and the corresponding Gauss and mean curvature changes
by K̄η, H̄η. Following Serra et al. (2018), we give the following mathematical definition.

DEFINITION 1. The Lagrangian backbone B(t) of separation is the theoretical centrepiece
of the material spike over the time interval [t0, t0 + T].

(a) A 1-D backbone B(t) is an evolving material line whose initial position B(t0) is a
set of points made by positive-valued maxima of the 2κ̄η field (figure 2b). For each
η = const. layer, B(t0) is made of positive maximum points of 2κ̄η.

(b) A 2-D backbone B(t) is an evolving material surface whose initial position B(t0) is
a positive-valued, wall-transverse ridge of 2κ̄η (figure 2b). For each η = const. layer,
B(t0) is made of positive maxima of 2κ̄η along the principal direction ζ̄ 2.
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Figure 3. Separation ridge curved in x1 − x2 generated by flow described in § 7.1 over a time interval [0, 2.5].
(a) Mean curvature change H̄2.5

0 and (b) Gaussian curvature change K̄2.5
0 fields shaded on representative

material surfaces at t = 2.5. (c) Larger principal curvature change 2κ̄
2.5
0 field shaded on a material surface

at t = 0. The Lagrangian backbone of separation B(0) is shown in red, and the black line corresponds to the
Lagrangian spiking curve γsc. (d,e) The Lagrangian backbone of separation B(t) at later times in red, with
the change in the larger principal curvature 2κ̄

2.5
0 shaded on selected material surfaces. The time evolution of

panels (a–e) is available in supplementary movie 2.

To discern 1-D and 2-D separation backbones, we first identify the set of points rη( p) on

different (η = const.) layers where 2
√

|K̄η( p)| = |H̄η( p)|. On these points, W̄ t
t0( p) does

not have distinct eigenvalues. Within this set, a 1-D separation backbone B(t0) at t0 is
made of positive maximum points of 2κ̄η( p) := H̄η( p)/2, specified by the conditions in
Proposition 2(i) left. The first condition ensures material upwelling while the second and
third conditions ensure that 2κ̄η( p) is maximum, i.e. that 2κ̄η( p) has zero gradient and a
negative definite Hessian. By contrast, 2-D separation backbones B(t0) at t0 are made of

points rη( p) on different (η = const.) layers where 2
√

|K̄η( p)| /= |H̄η( p)|. Within this set,
B(t0) is made of positive maxima of 2κ̄η along the principal direction ζ̄ 2, specified by the
conditions in Proposition 2(i) right.

Similar to the 2-D case (Serra et al. 2018), in three dimensions, the points (curves)
where the Lagrangian one- (two-)dimensional separation backbones connect to the wall
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Figure 4. Separation ridge curved in the x2–x3 plane, generated by the flow described in § 7.2 over a
time-interval [0, 2.5]. (a–e) Panel descriptions are the same as figure 3. The time evolution of panels
(a–e) is available in supplementary movie 3.

are of particular interest for understanding whether the separation is on-wall or off-wall
and for potential flow control strategies. We name these on-wall points Lagrangian spiking
points rsp and Lagrangian spiking curves γ sc (figure 2c). They can be identified as the
intersection of B(t0) with the wall W :

rsp := one-dimensional B(t0) ∩ W, γsc := two-dimensional B(t0) ∩ W . (4.3a,b)

We provide below an alternative method for locating rsp and γ sc in terms of the
Weingarten map. Because 2κ̄0( p) = 0 on the wall, rsp and γ sc are distinguished wall points
and lines with maximal positive 2κ̄η( p) in the limit of η → 0. To this end, we define
K̄δη( p) = det(W̄ δη( p)) (we use the subscript 0 < δη � 1 to indicate the leading-order
contribution of material folding close to the wall) and H̄δη( p) = Tr(W̄ δη( p)), where
W̄ δη( p) encodes the leading-order curvature change close to the wall. Using K̄δη and
H̄δη, in Appendix D we derive explicit formulas for the Lagrangian spiking points and
curves in the case of compressible and incompressible flows. The only difference between
the two cases is that, in the former, W̄ δη( p) := ∂ηW̄ η( p)|η=0, while, in the latter,
W̄ δη( p) := ∂ηηW̄ η( p)|η=0. We summarize our results for the identification of rsp and
γ sc in terms of Lagrangian quantities in table 1.
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For compressible flows (∇ · f /= 0), define W̄ δη( p) := ∂ηW̄ η( p)|η=0.
For incompressible flows (∇ · f = 0), define W̄ δη( p) := ∂ηηW̄ η( p)|η=0.

Lagrangian spiking point rsp = rη=0(psp) Lagrangian spiking curve γ sc = {rη=0(psc)}

2
√

|K̄δη( p)| = |H̄δη( p)| 2
√

|K̄δη( p)| /= |H̄δη( p)|

2κ̄δη( p) := H̄δη( p)/2, 2κ̄δη( p) := max eigenvalue[W̄ δη( p)],⎧⎪⎨⎪⎩
2κ̄δη(psp) > 0,

∇p2κ̄δη(psp) = 0,

Hess [2κ̄δη(psp)] ≺ 0.

⎧⎪⎨⎪⎩
2κ̄δη(psc) > 0,

〈∇p2κ̄δη(psc), ζ̄ 2〉 = 0,

〈ζ̄ 2, Hess [2κ̄δη(psc)]ζ̄ 2〉 < 0.

Table 1. Exact criteria for the Lagrangian spiking points rsp and curves γ sc on a no-slip boundary over the
time interval [t0, t0 + T] for compressible and incompressible flows. All quantities (·) describe eigenvalues,
eigenvectors, trace and determinant of W̄ δη( p), consistent with our earlier notation.

∇ · f /= 0. W̄ δη( p) = ∂ηW̄ η( p)|η=0

Steady Time-periodic: f (x, t + Tp) = f (x, t) Temporally aperiodic
T = nTp, n ∈ N

+

(
∂uuη f3 ∂vuη f3
∂uvη f3 ∂vvη f3

) ⎛⎝∫ t0+Tp
t0

∂uuη f3 dt
∫ t0+Tp

t0
∂vuη f3 dt∫ t0+Tp

t0
∂uvη f3 dt

∫ t0+Tp
t0

∂vvη f3 dt

⎞⎠ ⎛⎝∫ t0+T
t0

∂uuη f3 dt
∫ t0+T

t0
∂vuη f3 dt∫ t0+T

t0
∂uvη f3 dt

∫ t0+T
t0

∂vvη f3 dt

⎞⎠
∇ · f = 0. W̄ δη( p) = ∂ηηW̄ η( p)|η=0

Steady Time-periodic: f (x, t + Tp) = f (x, t) Temporally aperiodic
T = nTp, n ∈ N

+

(
∂uuη,η f3 ∂vuηη f3
∂uvηη f3 ∂vvηη f3

) ⎛⎝∫ t0+Tp
t0

∂uuηη f3 dt
∫ t0+Tp

t0
∂vuηη f3 dt∫ t0+Tp

t0
∂uvηη f3 dt

∫ t0+Tp
t0

∂vvηη f3 dt

⎞⎠ ⎛⎝∫ t0+T
t0

∂uuηη f3 dt
∫ t0+T

t0
∂vuηη f3 dt∫ t0+T

t0
∂uvηη f3 dt

∫ t0+T
t0

∂vvηη f3 dt

⎞⎠
Table 2. Formulas for computing W̄ δη( p) used in the definitions of the Lagrangian spiking points and curves
(table 1) in terms of on-wall Eulerian quantities for steady, time-periodic and time-aperiodic flows. Here,
f3 = f3(rη( p), t), and derivatives are evaluated at η = 0.

In table 2, we provide exact formulas for computing W̄ δη( p) used in the definitions of
the Lagrangian spiking points and curves (table 1) in terms of on-wall Eulerian quantities
for steady, time-periodic and time-aperiodic flows. The formulas in tables 1 and 2 highlight
three important facts. First, in the case of steady flows, spiking points and curves are
fixed, independent of T , and can be computed from derivatives of the velocity field on
the wall. Second, in the case of Tp-periodic flows, with T equal to any arbitrary multiple
of Tp, spiking points and curves are fixed, independent of t0, and can be computed by
averaging derivatives of the velocity field on the wall over one period. Third, for general
unsteady flows or time-periodic flows with T /= nTp, n ∈ N

+, spiking points and curves
move depending on t0 and T , and can be computed by averaging derivatives of the
velocity field over [t0, t0 + T]. We summarize the results of this section in the following
Proposition.
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Spike formation theory in 3-D flow separation

PROPOSITION 2. Over the finite-time interval t ∈ [t0, t0 + T]:

(i) The initial position B(t0) of the Lagrangian backbone of separation can be
computed as the set of points rη( p) ∈ U, p ∈ V, η ∈ [0, η1] that satisfy the following
conditions.

1-D Lagrangian backbone of separation 2-D Lagrangian backbone of separation

2
√

|K̄η( p)| = |H̄η( p)| 2
√

|K̄η( p)| /= |H̄η( p)|

2κ̄η( p) := H̄η( p)/2, 2κ̄η( p) := max eigenvalue[W̄ t
t0 ( p)],

B(t0) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2κ̄η( p) > 0, η ∈ (0, η1]
∇p2κ̄η( p) = 0, η ∈ (0, η1]
Hess [2κ̄η( p)] ≺ 0, η ∈ (0, η1]
(rsp, η), η = 0,

B(t0) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2κ̄η( p) > 0, η ∈ (0, η1]
〈∇p 2κ̄η( p), ζ̄ 2〉 = 0, η ∈ (0, η1]
〈ζ̄ 2, Hess [2κ̄η( p)]ζ̄ 2〉 < 0, η ∈ (0, η1]
(γ sc, η), η = 0,

The Lagrangian spiking points rsp and curves γ sc can be computed in terms of
Lagrangian quantities using the formulas in table 1, in terms of wall-based averaged
Eulerian quantities using the formulas in tables 1 and 2, or as the intersection of
B(t0) with the no-slip boundary (4.3a,b).

(ii) Later positions B(t) of the Lagrangian backbone of separation can be computed as
B(t) := F t

t0(B(t0)).
(iii) The Lagrangian spiking points and curves

Steady flow Time − periodic flow : f (x, t + Tp) = f (x, t) Aperiodic flow

are fixed if T = nTp, n ∈ N
+; are fixed move

and independent of t0, T and independent of t0, n depending on t0, T .

By Proposition 1, the Lagrangian backbone of separation is invariant under coordinate
(x) transformations (cf. (3.10)) and changes in the parametrization (r( p)) of initial
conditions. Although the analytic formulas in tables 1 and 2 involve higher derivatives of
the velocity field, the spiking point can also be identified as the intersection of B(t0) with
the wall (cf. (4.3a,b)) with low numerical effort. We note that, in general unsteady flows
f (x, t), the flow map F t0+T

t0 depends on both the initial time t0 and on the Lagrangian time
interval T . Varying these two parameters enables uncovering all the separation features
generated by f (x, t), and their choice depends on technological limitations and the desired
separation analysis. We provide two examples for selecting t0 or T in Appendix I.

5. The Eulerian backbone of flow separation

Over an infinitesimally short-time interval, the Eulerian backbone of flow separation acts
as the centrepiece of the material spike formation. We define this Eulerian concept by
taking the time derivative of the Lagrangian backbone of separation and evaluating it at
T = 0. From (4.1a,b), the rate of change of W̄ t

t0( p) in the infinitesimally short time limit is
Ẇ t( p) (eq. (3.6)). Denoting by 1κ̇t( p) ≤ 2κ̇t( p), ζ̇ 1, ζ̇ 2 the eigenvalues and eigenvectors
of Ẇ t( p), and by K̇t( p) = det[Ẇ t( p)] = 1κ̇t( p)2κ̇t( p), Ḣt( p) = Trace[Ẇ t( p)]/2 =
(1κ̇t( p) + 2κ̇t( p))/2 the Gaussian and mean curvature rates, we define the Eulerian
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backbone of separation as follows. We may omit the explicit time dependence notation
for compactness.

DEFINITION 2. At a time instant t, the Eulerian backbone of separation BE(t) is the
theoretical centrepiece of the material spike over an infinitesimally short time interval.

(a) A 1-D backbone BE(t) is a set of points made by positive-valued maxima of the 2κ̇η

field. For each η = const. layer, BE(t) is made of positive maximum points of 2κ̇η.
(b) A 2-D backbone BE(t) is a positive-valued, wall-transverse ridge of 2κ̇η. For each

η = const. layer, BE(t) is made of positive maxima of 2κ̇η along the principal
direction ζ̇ 2.

Here, BE(t) is a set of points where the instantaneous folding rate is positive and attains
a local maximum along each η = const. surfaces, and can be computed as described in
Proposition 3.

Similar to the Lagrangian case, we define the Eulerian spiking point rspE and the
Eulerian spiking curve γscE as follows:

rspE := one-dimensional BE(t0) ∩ W, γscE := two-dimensional BE(t0) ∩ W,

(5.1a,b)

i.e. where the Eulerian backbones of separation connects to the wall. Because κ̇t( p) ≡ 0 on
the no-slip boundary, rspE, γscE are distinguished points on the wall with positive maximal
curvature rate in the limit of η → 0.

For a flat wall, we derive analytic expressions for rspE = rη=0(pspE) and γscE (a set
of rscE = rη=0(pscE)) in Appendix E, and summarize them in tables 3 and 4. For steady
flows, comparing the formula of psp and psc (cf. table 1) with the one of pspE and pscE (cf.
table 3), we obtain that the Lagrangian and the Eulerian backbones of separation connect
to the wall at the same location, i.e. pspE ≡ psp and γspE ≡ γsp (see e.g. figure 9). We
summarize the results of this section in the following Proposition.

PROPOSITION 3. At a time instant t:

(i) The Eulerian backbone of separation BE(t) can be computed as the set of points
rη( p) ∈ U, p ∈ V, η ∈ [0, η1] that satisfy the following conditions.

1-D Eulerian backbone of separation 2-D Eulerian backbone of separation

2
√

|K̇η( p)| = |Ḣη( p)| 2
√

|K̇η( p)| /= |Ḣη( p)|

2κ̇η( p) := Ḣη( p)/2, 2κ̇η( p) := max eigenvalue[Ẇ t
t0 ( p)],

BE(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2κ̇η( p) > 0, η ∈ (0, η1]
∇p2κ̇η( p) = 0, η ∈ (0, η1]
Hess [2κ̇η( p)] ≺ 0, η ∈ (0, η1]
(rsp, η), η = 0,

BE(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2κ̇η( p) > 0, η ∈ (0, η1]
〈∇p 2κ̇η( p), ζ̇ 2〉 = 0, η ∈ (0, η1]
〈ζ̇ 2, Hess [2κ̇η( p)]ζ̇ 2〉 < 0, η ∈ (0, η1]
(γ sc, η), η = 0.

The Eulerian spiking points rspE and curves γ scE can be computed using the
formulas in tables 3 and 4, or as the intersection of BE(t) with the no-slip boundary
(5.1a,b).

(ii) The Eulerian spiking point and curve coincides with the Lagrangian spiking point
and curve in steady flows.
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Spike formation theory in 3-D flow separation

For compressible flows (∇ · f /= 0), define Ẇ δη( p) := ∂ηẆ η( p)|η=0.
For incompressible flows (∇ · f = 0), define Ẇ δη( p) := ∂ηηẆ η( p)|η=0.

Eulerian spiking point rspE = rη=0(pspE) Eulerian spiking curve γ scE = {rη=0(pscE)}
2
√

|K̇δη( p)| = |Ḣδη( p)| 2
√

|K̇δη( p)| /= |Ḣδη( p)|

2κ̇δη( p) := Ḣδη( p)/2, 2κ̇δη( p) := max eigenvalue[Ẇ δη( p)],⎧⎪⎨⎪⎩
2κ̇δη(pspE) > 0,

∇p2κ̇δη(pspE) = 0,

Hess [2κ̇δη(pspE)] ≺ 0.

⎧⎪⎨⎪⎩
2κ̇δη(pscE) > 0,

〈∇p 2κ̇δη(pscE), ζ̇ 2〉 = 0,

〈ζ̇ 2, Hess [2κ̇δη(pscE)]ζ̇ 2〉 < 0.

Table 3. Exact criteria determining the Eulerian spiking points rspE and curves γ scE on a no-slip boundary at

a time instant t for compressible and incompressible flows. All quantities ˙
(·) describe eigenvalues, eigenvectors,

trace and determinant of ˙̄W δη( p), consistent with our earlier notation.

∇ · f /= 0 ∇ · f = 0

∂ηẆ t
t0 ( p)|η=0 =

(
∂uuη f3 ∂vuη f3
∂uvη f3 ∂vvη f3

)
∂ηηẆ t

t0 ( p)|η=0 =
(

∂uuηη f3 ∂vuηη f3
∂uvηη f3 ∂vvηη f3

)
Table 4. Formulas for computing Ẇ δη( p) used in the definitions of the Eulerian spiking points and curves
(table 3) in terms of on-wall Eulerian quantities. Here, f3 = f3(rη( p), t), and derivatives are evaluated at η = 0
and t = t0.

By Proposition 1, the Eulerian backbone of separation is objective. Following the same
argument of § 4, although the analytic formulas in table 4 involve higher derivatives of the
velocity field, the spiking point can also be identified with low numerical effort directly
from (5.1a,b), as the intersection of BE(t) with the wall.

6. Numerical schemes

We summarise the numerical steps necessary to locate Lagrangian and Eulerian separation
backbones in a general 3-D flow.

Algorithm 1: Compute the Lagrangian backbone B(t) of separation (Proposition
2)

1 Inputs: a 3-D velocity field f (x, t) around a no-slip boundary over a finite-time
interval [t0, t0 + T]. Geometry of the no-slip boundary parametrized by rη=0( p),
p ∈ V ⊂ R

2.
2 Procedure: initialize a set of material surfaces parallel to the wall, parametrized in

the form rη( p), where p ∈ V , η ∈ [0, η1], η1 > 0. Advect the material surface
under the velocity field f (x, t) for the time interval [t0, t0 + T].

3 Compute the change in Weingarten map W̄ t0+T
t0 of the material surfaces using (3.4)

or using the first 1Γη( p) and second 2Γη( p) fundamental forms as in Appendix A.
4 Compute the eigenvalues and eigenvectors of W̄ t0+T

t0 and identify the initial
position B(t0) using Proposition 2.

5 Compute later positions of the Lagrangian backbone of separation B(t) by
advecting its initial position B(t0) under the flow map Ft

t0, t ∈ [t0, t0 + T].
6 Output: Lagrangian backbone of separation B(t), t ∈ [t0, t0 + T].
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Algorithm 2: Compute the Eulerian backbone BE(t) of separation (Proposition 3)
1 Inputs: a 3-D velocity field f (x, t) around a no-slip boundary at time t. Geometry

of the no-slip boundary parametrized by rη=0( p), p ∈ V ⊂ R
2.

2 Procedure: initialize a set of material surfaces parallel to the wall, parametrized in
the form rη( p), where p ∈ V , η ∈ [0, η1], η1 > 0.

3 Compute the rate of change in Weingarten map Ẇ (t) using (3.6).
4 Compute the Eulerian backbone of separation BE(t) using Proposition 3.
5 Output: Eulerian backbone of separation BE(t).

In §§ 7.1–7.5, we have applied Algorithms 1 and 2 using the standard ode45 function
in MATLAB (2021b) with absolute and relative tolerances 10−6 to compute F t

t0
(x0),

and approximated spatial derivatives of F t
t0
(x0) with finite differencing. We adopt a

similar procedure in §§ 7.6 and 7.7, except for the computation of F t
t0
(x0), which is

outputted directly by the Navier Stokes solver, as detailed in Appendix H. The computation
of Eulerian and Lagrangian backbones of separation is robust. Similarly, we robustly
identified the spiking points and curves using their topological definitions in ((4.3a,b)
and (5.1a,b)). Identifying the spiking points and curves using only wall-based quantities
(cf. tables 1 and 3), however, is more sensitive to noise due to higher spatial derivatives
involved. We have addressed this challenge in Klose et al. (2020b) by computing the higher
wall-normal and tangential velocity derivatives at the wall using a high-order spectral
element method with polynomial orders higher than required by the derivatives. In (Klose
et al. 2020b), we have also reduced numerical noise by properly filtering the spatial
derivatives. We expect a similar procedure to apply to 3-D flows.

7. Examples

We illustrate our results by applying Algorithms 1 and 2 to 3-D analytical and simulated
flow fields. In §§ 7.1 and 7.4, we introduce our results on simple, synthetic, analytical
flows, demonstrating how our method captures simultaneous 1-D and 2-D backbones
of separation. We also show that other metrics, such as the Gaussian curvature K̄t

t0
and mean curvature H̄t

t0 changes are suboptimal to capture flow separation. In § 7.4, we
capture separating structures that transition from a purely on-wall separation to on-wall
and off-wall separation for longer time intervals. In §§ 7.5 and 7.7, we apply our results
to steady and unsteady velocity fields that solve the Navier–Stokes equations and are
computed by direct numerical simulation.

7.1. Two-dimensional separation ridge curved on the wall
We consider an analytical velocity field that generates a curved separation structure from
a flat, no-slip boundary located at x3 = 0. We construct the velocity field as f1 = 0, f2 = 0
and f3 = 0.5(x2

3/((x1 − ex2−2)2 + 0.5)), and perform a Lagrangian analysis in the time
interval [0, 2.5]. H̄2.5

0 and K̄2.5
0 are shaded on three representative material surfaces

M(t) at increasing distances from the wall in figure 3(a,b). Figure 3(c) shows the
initial Lagrangian backbone of separation B(0) (red) along with the largest principal
curvature change field 2κ̄

2.5
0 shaded on M(0). The advected backbone of separation

B(t) is shown in figure 3(d) at t = 1.2 and (e) at t = 2.5, along with 2κ̄
2.5
0 shaded on

M(t). The black curve on the wall in panels (c–e) marks the Lagrangian spiking curve,
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Figure 5. Coexisting 1-D and 2-D separation backbones generated by the flow described in § 7.3. (a) Larger
principal curvature rate field 2κ̇ , Eulerian backbones of separation BE (magenta) and their corresponding
Eulerian spiking point rspE and curve γscE (green). (b,c) The Lagrangian backbones of separation B(t) (red),
their corresponding Lagrangian spiking point rsp and curve γsc (black), along with the larger principal curvature
change 2κ̄

5
0 shaded on representative material surfaces at t = 0 and t = 5. The time evolution of the above

panels, along with the H̄ and K̄ metrics, are available in supplementary movie 4.

i.e. the on-wall signature of the separation backbone. The Gaussian curvature change is
zero along the ridge, making K̄t0+T

t0 an unsuitable metric to characterize the separation
backbone.

7.2. Two-dimensional separation ridge curved off-wall
We consider an analytical velocity field that generates an off-wall curved separation ridge
from a flat, no-slip boundary located at x3 = 0. We construct a velocity field as f1 = 0, f2 =
0 and f3 = 0.5((0.2x2

2 + 1)x2
3/(0.2x2

1 + 1)). Figure 4 shows the same quantities of figure 3
for this new velocity. Here, H̄2.5

0 is zero at the saddle point of the separation spike, showing
that the mean curvature change is suboptimal for identifying the backbone of separation.
By contrast, 2κ̄

2.5
0 has a maximal ridge along the centrepiece of the material spike,

correctly identifying the backbone of separation (red), and the corresponding Lagrangian
spiking curve γsc (black).

7.3. Coexisting 1-D and 2-D backbones of separation
Material spike formation could lead to either 1-D or 2-D backbones of separation
(figure 2). Here, we consider an analytical velocity field coexisting 1-D and
2-D separation backbones. The velocity field is given by f1 = 0, f2 = 0 and
f3 = 0.1(x2

3/((x1 + 2)2 + x2
2 + 0.2)) + 0.1(x2

3/((x1 − 2)2 + 0.2)). Figure 5(a) shows the
Eulerian backbones of separation (magenta), the largest principal curvature rate 2κ̇
shaded on representative material surfaces at different distances from the wall and the
Eulerian spiking curve γscE and point γspE (green), representing the on-wall footprints
of the Eulerian backbones of separation. We also compute the Lagrangian backbones
of separation B(t) over a time interval [0, 5], and show them in red along with
the 2κ̄

5
0 field at the initial and final times along their corresponding γsp and γsc in

black (figure 5b,c). A closer inspection of panels (a,b) shows that the Eulerian and
Lagrangian spiking points and curves coincide in steady flows, as predicted theoretically in
Proposition 3.
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y

x

yc
Rc

Uc = U0 + β cos(ωct)

Ω

Figure 6. Set-up of a flow separation induced by a rotating and translating cylinder. The analytical solution of
the creeping flow generated by this set-up is in Appendix F.

This simple example illustrates the ability of our method to simultaneously detect 1-D
and 2-D backbones of separation without a priori assumptions. In controlling general
unsteady flows (e.g. aerodynamic applications subject to unknown external disturbances),
one would ideally want a method that readily locates spike formation and informs
the control action to mitigate flow separation at its onset. Specifically, identifying
automatically the numbers and locations of forming spikes and their dimensions (one
dimension and two dimensions) is relevant for designing optimal control strategies.

7.4. On-wall to off-wall separation
We consider a general unsteady flow generated by a rotating–translating cylinder, as
shown in figure 6 with the parameters Ω = 3.5, U0 = 0.3, β = 0.5 and ωc = 2π/5. We
extend the analytical solution to this creeping 2-D flow with components [u, v] given in
Appendix F to generate a 3-D velocity field given by f1 = u, f2 = 0 and f3 = v. The initial
position of the Lagrangian backbone of separation B(t0) computed over a time interval
T = 6 is shown in red (figure 7a), along with γsc (black) and the 2κ

6
0 field shaded on

selected material surfaces. Here, B(t) and the advected material surfaces are shown in
panel (b) at t = 3 and (c) at t = 6. Over this time interval, the separation is fixed or on-wall,
as a single continuous backbone connects to the wall at the spiking curve γ sc (black). By
contrast, for a longer time scale, T = 10, the Lagrangian backbone of separation B(t0)
becomes discontinuous (figure 7d,e).

Because the rotating cylinder moves towards larger x1 values, for longer time scales
T = 10, the separation backbone loses its original footprint on the wall (γsc in panels
a–c) and develops two disconnected pieces. The lower backbone connecting to the wall
uncovers a new spiking curve (γsc in panels d–g), which serves as the on-wall footprint
of the latest separation structure close to the wall. Figure 7( f,g) shows how the lower
section of the B(t) acts as the centrepiece of the new spike formation close to the wall.
In this case, we speak about moving separation. The upper part, in contrast, connects to
the highest value of 2κ̄ and acts as the centrepiece of the separation spike governed by the
off-wall dynamics. This transition from on-wall (fixed) to off-wall (moving) separation
and the ability to capture distinct separation structures over time is an automated outcome
of our method – grounded on a curvature-based theory – which does not require any a
priori assumptions. For a detailed discussion comparing our curvature-based theory and
previous approaches to identify off-wall flow separation, see § 6.2.1 of Serra et al. (2018).

The analytical, synthetic examples above show how our approach automatically (i)
captures 1-D and 2-D separation backbones, (ii) discerns on-wall (fixed) to off-wall
(moving) separation and (iii) locates previously unknown on-wall signatures of fixed
separation. We now apply our approach to physical flow fields.
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Figure 7. Separation backbone generated by the flow described in § 7.4. (a–c) Change in the larger principal
curvature 2κ̄

T
0 for T = 6 shaded on a material surface at t = 0, t = 3 and t = 6. (d,e) Same as (a–c) for T = 10

shaded on material surfaces at t = 0 and t = 10. The Lagrangian backbone of separation B(t) is in red, and
the Lagrangian spiking curve γsc is in black. ( f,g) Evolution of the material surfaces (blue) and the separation
backbone (red) intersecting the x1 − x3 plane in the close-to-wall region marked by the cyan rectangle in (d).
The time evolution of the above panels, along with the H̄ and K̄ fields, are available in supplementary movie 5
for T = 6 and in supplementary movie 6 for T = 10.

7.5. Steady flow past a cube
We consider a flow past a mounted cube of edge length h = 1, placed on the wall at
x3 = 0 and centred at x1 = 4.5 and x2 = 1.5. We solve the incompressible Navier–Stokes
equations at a Reynolds number Re = U∞h/ν = 200, where U∞ is the free-stream
velocity and ν the kinematic viscosity. Figure 8 shows the flow set-up and the velocity
streamlines. Additional details regarding the numerical simulation are in Appendix G. We
explore the separation dynamics in the region upstream of the mounted cube near the wall
x3 = 0. Figure 9(a) shows the initial position of the Lagrangian backbone of separation
B(0) (red) computed for the time interval [0, 1] and the corresponding 2κ

1
0 field shaded

over selected material surfaces at the initial time. Figure 9(a,b) shows B(t) along with
the 2κ

t
0 field shaded over material surfaces at t = 0 and t = 1. Panels (a,b) show again

how B(t) acts as the centrepiece of the separation structure over time. The inset in (a,b)
shows the geometry of the separation backbone and how the Lagrangian spiking curve
(γsc) remains invisible to skin-friction streamlines (blue). Figure 9(c) shows the Eulerian
backbone of separation BE (magenta) and the rate of change of the largest principal
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Figure 8. Steady velocity field for the flow past a mounted cube described in Appendix G. The streamlines
are coloured by the streamwise velocity component u/U∞ in the x2 = 1.5h plane and the streamlines at x3 = 0
correspond to skin-friction lines. Here, U∞ is the free-stream velocity and h = 1 is the cube height.

curvature 2κ̇ shaded on selected material surfaces. The inset in figure 9(d) shows the
Eulerian spiking curve γscE(green) and the geometry of BE(0). We can see that γscE ≡ γsc,
which is true for all steady flows (cf. tables 1 and 3). As already found in two dimensions
(figure 1 and Serra et al. 2018), the onset of separation is distinct from the on-wall footprint
of the corresponding asymptotic structure.

7.6. Steady laminar separation bubble flow
We consider a steady, laminar separation bubble (LSB) on a flat plate with a spanwise
modulation. We use an eighth-order accurate discontinuous Galerkin spectral element
method (Kopriva 2009; Klose, Jacobs & Kopriva 2020a) to discretize the compressible
Navier–Stokes equations spatially. The Reynolds number is Reδ∗

in
= U∞δ∗

in/ν = 500,
based on the free-stream velocity U∞, the height of the inflow boundary layer
displacement thickness δ∗

in and the kinematic viscosity ν. The free-stream Mach number
is 0.3. The computational domain is Lx1 × Lx2 × Lx3 = 200δ∗

in × 10δ∗
in × 15δ∗

in, where x1,
x2 and x3 are the streamwise, spanwise and transverse directions. We prescribe a Blasius
profile at the inlet and outlet and set the wall to be isothermal. We prescribe a modified
free-stream condition at the top boundary, with a suction profile for lateral velocity
component similar to Alam & Sandham (2000), to induce flow separation on the bottom
wall. Figure 10(a) shows the streamlines of the flow in red and the skin-friction lines in
blue. We refer to Appendix H for additional details on the set-up and the flow field.

Figure 11 shows selected material sheets coloured by the curvature 2κ̄
30
0 . The Lagrangian

backbone of separation B(t) for the time interval [0, 30] is in red: its initial position is in
panel (a), and its advected positions B(t) in panels (b–d), with a detailed plot in panel
(e) showing skin-friction lines in blue. As already noted earlier, the Lagrangian spiking
curve (black line) γsc is located upstream of the limiting skin-friction line again, indicating
that the onset of flow separation has a different location compared with the asymptotic
separation structures, even in steady flows.

969 A25-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

55
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.559


Spike formation theory in 3-D flow separation

1.0

0.5

0
3

2

1

0 3
4

5

1.0

0.5

0
3

2

1

0 3
4

5

1.0

0.5

0
3

2

1

0 3
4

5

0 50 100 150 0 50 100 150 0 5 10 15

0.10

0.05

0
3.0

2.5

2.0

1.5

0.10

0.05

0
3.0

2.5

2.0

1.53.0 3.2 3.4 3.6 3.8 4.0

0.10

0.05

0
3.0

2.5

2.0

1.5
3.0 3.2 3.4 3.6 3.8 4.03.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

x3

x2 x1

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

x2 x1

x3

x2 x1

t = 0 t = 1.0 t = 0

t = 0
t = 1.0 t = 0

2κ̄0
1.0

2κ̄0
1.0

2κ̇

(a) (b) (c)

Figure 9. Separation backbone generated by the flow past a cube described in § 7.5. (a,b) Value of 2κ̄
1
0 shaded

on selected material surfaces at (a) t = 0 and (b) t = 1. The Lagrangian backbone of separation B(t) is in red,
the black line on the wall marks the Lagrangian spiking curve γsc, and skin-friction lines are in blue. Skin
(c) 2κ̇ shaded on selected material surfaces. The Eulerian backbone of separation is in magenta, and the
Eulerian spiking curve γscE is in green. Insets show a zoomed view of the above panels and the limiting
skin-friction line in light blue. Black lines at the edge of material surfaces aid visualization. The time evolution
of the above panels, along with the H̄ and K̄ metrics, are available in supplementary movie 7.
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Figure 10. (a) Flow field of the steady LSB. (b,c) Flow field of the unsteady, moving LSB at (b) t = 100 and
(c) t = 110. Slice colour map represents the streamwise velocity component u/U∞, streamlines are in red and
skin-friction lines are in blue.

7.7. Unsteady, moving LSB flow
We consider the flow around a LSB on a flat plate with a spanwise modulation introduced
in § 7.6, but with a time-periodic oscillation of the suction profile on the top boundary
to induce unsteady movement of the bubble. The oscillation frequency is f = 1/20 and
the magnitude is 10δ∗

in. Figure 10(b,c) illustrates the flow’s streamlines and skin-friction
lines. We perform a Lagrangian analysis over a time interval of T = 5 convective time
units starting at t0 = 99 (figure 12a,b) and t0 = 120 (figure 12c,d), hence compute the
Lagrangian backbone of separation based on 2κ̄

104
99 and 2κ̄

125
120 . Figure 12 highlights the time

dependency of the Lagrangian separation backbone, with its shape and surface signature,
i.e. the Lagrangian spiking curve γsc, being a function of t0. The backbone and material
sheets are shown at their initial positions (a,c) and final positions (b,d).

Last, figure 13 shows the Eulerian backbone of separation (magenta) at t0 = 99 and
t0 = 120, their Eulerian spiking curves γscE (green) and the skin-friction lines (blue). For
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Figure 11. Lagrangian backbone of separation B(t) (red) generated by a steady LSB on a flat plate with
selected material sheets coloured by the 2κ̄

30
0 . The Lagrangian spiking curve γsc is in black. Panels (a–d)

show advected positions of the backbone B(t). (e) Detailed plot showing the same as (d) from a different view
along with skin-friction lines in blue and the limiting skin-friction line in light blue. The time evolution of the
above panels, along with the H̄ and K̄ metrics, are available in supplementary movie 8.

comparison, we also show the Lagrangian spiking curves γsc (black) discussed in figure 12.
The Eulerian backbone intersects the wall at a location different from the Lagrangian
backbone of separation, consistent with theoretical predictions (cf. §§ 4 and 5). Note that
the scale of the axes in figure 13 is different to figure 12. Consistent with the earlier test
cases, the backbones of separation we locate remain inaccessible to skin-friction lines
while acting as the centrepieces of the forming material spikes.

8. Conclusions

We developed a frame-invariant theory of material spike formation during flow separation
over a no-slip boundary in 3-D flows with any time dependence. Based on the larger
principal curvature evolution of material surfaces, our theory uncovers the material spike
formation from its birth to its developed Lagrangian structure. Curvature arises from
an objective interplay of stretching- and rotation-based kinematic quantities, revealing
features that remain hidden to criteria based only on stretching or rotation. Our kinematic
theory applies to numerical, experimental or model velocity fields.

The backbone can be one- or two-dimensional, connected to the wall or not. When the
backbones connect to the wall, we speak about fixed separation. Otherwise, it is a moving
separation. For fixed separation, we have discovered new, distinct, wall locations called
spiking points and spiking curves, where 1-D and 2-D backbones connect to the no-slip
boundary. We provide criteria for identifying spiking curves and points using wall-based
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Figure 12. Moving LSB on a flat plate. The Lagrangian backbone of separation B(t) based on 2κ̄
104
99 (a,b),

2κ̄
125
120 (c,d) are in red, along with selected material surfaces coloured by the respective 2κ̄ fields, and the

Lagrangian spiking curves γsc (black). Panels (a,c) show the material surfaces and B(t) at the initial times,
while panels (b,d) at the final times. The time evolution of the above panels, along with the H̄ and K̄ metrics,
are available in supplementary movie 9 for t ∈ [99, 104] and supplementary movie 10 for t ∈ [120, 125].
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Figure 13. Moving LSB on a flat plate. The Eulerian backbone of separation BE(t) is in magenta, the Eulerian
spiking curve is in green and the Lagrangian spiking curves based on 2κ̄

104
99 (a) and 2κ̄

125
120 (b) are in black.

Selected material sheets are coloured by 2κ̇99 (a) and 2κ̇120 (b). Skin-friction lines are in blue and the limiting
skin-friction lines are in light blue.

quantities. Remarkably, spiking points and curves remain invisible to classic skin-friction
line plots even in steady flows.

Similarly to the spike formation in two dimensions (Serra et al. 2018), the spiking
points and curves identified here are constant in steady flows and in time-periodic flows
analysed over a time interval that is a multiple of their period. By contrast, they move in
general unsteady flows. Our theory is also effective over short-time intervals and admits
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a rigorous instantaneous limit. These properties, inaccessible to existing criteria, make
the present approach promising for monitoring and controlling separation. To mitigate
flow separation in general unsteady flows, for example, we envision locating the Eulerian
backbones of separation over time (see Appendix I for details) and inform the actuation
strategy with the backbones’ on-wall footprints (i.e. the spiking points and curves). The
number of spiking locations and their dimensions (one or two) provide essential geometric
information to direct the control action toward the on-wall locations associated with
the onset of separation. Interestingly, using data-driven methods, Bhattacharjee et al.
(2020) showed that the optimal actuator place to mitigate separation is upstream of the
asymptotic separation point on an airfoil, consistent with a 2-D spiking point location
(Klose et al. 2020b). Locating spiking points and curves using only wall-based quantities
needs higher-order spatial derivatives of the velocity field. Estimating these derivatives
requires dedicated filtering techniques. We have successfully identified spiking points in
two dimensions (Klose et al. 2020b) and expect the same approach to be effective in 3-D
flows.

The backbone of separation we identify evolves materially under all flow conditions,
serving as the core of the separating spike, a universally observed phenomenon unrelated
to the flow’s time dependence and the presence of singularities in the flow. Two natural
next steps are using our results in active flow control strategies and understanding the
dynamics or the hydrodynamic forces causing spike formation.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.559.
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Appendix A. Curvature of a material surface M(t)

In this section, we define the quantities to describe the curvature and stretching of material
surfaces M(t). We use the same notation in § 3. The first fundamental form of M(t) can
be computed as

1Γ
t
t0( p) =

(〈r̂u, r̂u〉 〈r̂u, r̂v〉
〈r̂v, r̂u〉 〈r̂v, r̂v〉

)
=
(〈ru( p), Ct

t0(r( p))ru( p)〉 〈ru( p), Ct
t0(r( p))rv( p)〉

〈ru( p), Ct
t0(r( p))rv( p)〉 〈rv( p), Ct

t0(r( p))rv( p)〉
)

.

(A1)
The second fundamental form of M(t) is given by

2Γ
t
t0( p) =

(〈nt, r̂uu( p)〉 〈nt, r̂uv( p)〉
〈nt, r̂uv( p)〉 〈nt, r̂vv( p)〉

)
=
(〈nt,∇2F t

t0(r( p))ruru + ∇F t
t0(r( p))ruu〉 〈nt,∇2F t

t0(r( p))rurv + ∇F t
t0(r( p))ruv〉

〈nt,∇2F t
t0(r( p))rvru + ∇F t

t0(r( p))rvu〉 〈nt,∇2F t
t0(r( p))rvrv + ∇F t

t0(r( p))rvv〉
)

= Bt
t0( p) + At

t0( p), (A2)

where [∇2F t
t0(r( p)rurv]i = [∇2F t

t0(r)ru]ij[rv]j = 〈∇[∇F t
t0(r)]ij, ru〉[rv]j ([∇2F t

t0(r)ru]ij
represents the directional derivatives of [∇F t

t0(r)]ij in the direction ru. We use the same
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Spike formation theory in 3-D flow separation

notation in (B8)–(B11)) and

Bt
t0( p) =

(〈nt, ∇2F t
t0(r( p))ruru〉 〈nt, ∇2F t

t0(r( p))rurv〉
〈nt, ∇2F t

t0(r( p))rvru〉 〈nt, ∇2F t
t0(r( p))rvrv〉

)
, (A3)

At
t0( p) =

(〈nt, ∇F t
t0(r( p))ruu〉 〈nt, ∇F t

t0(r( p))ruv〉
〈nt, ∇F t

t0(r( p))rvu〉 〈nt, ∇F t
t0(r( p))rvv〉

)
. (A4)

The Weingarten map of M(t) is given by

W t
t0( p) = (1Γ ( p))−1

2Γ
t
t0( p). (A5)

The principal curvatures 1κ
t
t0(p, t) and 2κ

t
t0(p, t) are given by the eigenvalues of the

Weingarten map W t
t0( p).

Appendix B. Proof of Theorem 1

Here, we derive the Lagrangian evolution of the Weingarten map along a material surface
M(t).

B.1. Material evolution of the Weingarten map
We expand (A4) as

At
t0( p) = 1

Jt
t0( p)

(〈(∇F t
t0 ru) × (∇F t

t0 rv),∇F t
t0 ruu〉 〈(∇F t

t0 ru) × (∇F t
t0 rv),∇F t

t0 ruv〉
〈(∇F t

t0 ru) × (∇F t
t0 rv),∇F t

t0 rvu〉 〈(∇F t
t0 ru) × (∇F t

t0 rv),∇F t
t0 rvv〉

)
,

(B1)
where ∇F t

t0 = ∇F t
t0(r( p)) and Jt

t0( p) =
√

det(1Γ ( p)t
t0). We simplify (B1) as

At
t0( p) = 1

Jt
t0( p)

(〈(∇F t
t0ru) × (∇F t

t0rv), ∇F t
t0ruu〉 〈(∇F t

t0ru) × (∇F t
t0rv), ∇F t

t0ruv〉
〈(∇F t

t0ru) × (∇F t
t0rv), ∇F t

t0rvu〉 〈(∇F t
t0ru) × (∇F t

t0rv), ∇F t
t0rvv〉

)
= det(∇F t

t0(r( p)))

Jt
t0( p)

(〈ru × rv, ruu〉 〈ru × rv, ruv〉
〈ru × rv, rvu〉 〈ru × rv, rvv〉

)
= Jt0( p)det(∇F t

t0(r( p)))

Jt
t0( p)

1
Jt0( p)

(〈ru × rv, ruu〉 〈ru × rv, ruv〉
〈ru × rv, rvu〉 〈ru × rv, rvv〉

)
= Jt0( p)det(∇F t

t0(r( p)))

Jt
t0( p)

At0
t0( p). (B2)

Because Bt0
t0( p) = 0, using (A2), we have 2Γ t0( p) = At0

t0( p). Therefore 2Γ t0( p) is given
by

2Γ
t
t0( p) = Jt0( p)det(∇F t

t0(r( p)))

Jt
t0( p)

2Γ t0( p) + Bt
t0( p). (B3)

By substituting (B3) into the definition of the Weingarten map (A5), we obtain

W t
t0( p) = (1Γ

t
t0( p))−1

1Γ t0( p)
Jt0( p)det(∇F t

t0(r( p)))

Jt
t0( p)

W t0( p) + (1Γ
t
t0( p))−1Bt

t0( p).

(B4)
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B.2. Rate of change of the Weingarten map of a material surface
We take the total time derivative (d/dt)(·) := ˙(·) of (B4) and evaluate it at t = t0. For
clarity, we calculate the time derivatives of each term separately:

˙det(∇F t
t0(r( p))|t0 = ∇ · f (r( p), t0), (B5)

˙Jt
t0( p)|t0 = 1

Jt0( p)
(〈ru, S(r( p), t0)ru〉〈rv, rv〉 + 〈rv, S(r( p), t0)rv〉〈ru, ru〉,

− 2〈ru, S(r( p), t0)rv〉〈ru, rv〉)
= αt0

Jt0( p)
, (B6)

where αt0 = 〈ru, S(r( p))ru〉〈rv, rv〉 + 〈rv, S(r( p), t0)rv〉〈ru, ru〉 − 2〈ru, S(r( p), t0)rv〉
〈ru, rv〉,

Ċ t
t0 |t0 = 2S(r( p), t0), (B7)

Ḃt
t0 |t0 =

(〈nt0, ∇2f (r( p), t0)ruru〉 〈nt0, ∇2f (r( p), t0)rurv〉,
〈nt0, ∇2f (r( p), t0)rvru〉 〈nt0, ∇2f (r( p), t0)rvrv〉

)
, (B8)

˙
(1Γ

t
t0( p)−1)|t0 = − 2αt0

J2
t0( p)

(1Γ t0( p))−1 + 2
J2

t0( p)
D(p, t0), (B9)

D(p, t0) =
( 〈rv, S(r( p), t0)rv〉 −〈ru, S(r( p), t0)rv〉

−〈ru, S(r( p), t0)rv〉 〈ru, S(r( p), t0)ru〉
)

. (B10)

We can rewrite ˙̄B|t0 in terms of the gradients of the rate-of-strain tensor and vorticity as

∇2f (r( p), t0) = ∇S(r( p), t0) + ∇Ω(r( p), t0). (B11)

Using (B11) and (B8), we get

Ḃt
t0 |t0 =

(〈nt0, ∇S(r( p), t0)ruru〉 〈nt0, ∇S(r( p), t0)rurv〉
〈nt0, ∇S(r( p), t0)rvru〉 〈nt0, ∇S(r( p), t0)rvrv〉

)
︸ ︷︷ ︸

M(p,t0)

+
(〈nt0, ∇Ω(r( p), t0)ruru〉 〈nt0, ∇Ω(r( p), t0)rurv〉

〈nt0, ∇Ω(r( p), t0)rvru〉 〈nt0, ∇Ω(r( p), t0)rvrv〉
)

︸ ︷︷ ︸
N(p,t0)

. (B12)

Using (B5)–(B12), we calculate the time derivative of the material evolution of the
Weingarten map (B4) at t = t0, which is given by

Ẇ t0( p) =
[(

∇ · f (r( p), t0) − 3αt0( p)

J2
t0( p)

)
I + 2D(p, t0)1Γ t0( p)

J2
t0( p)

]
W t0︸ ︷︷ ︸

Ẇ I

+ (1Γ t0( p))−1M(p, t0)︸ ︷︷ ︸
Ẇ II

+ (1Γ t0(p))−1N t0︸ ︷︷ ︸
Ẇ III

. (B13)
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Spike formation theory in 3-D flow separation

Appendix C. The value of W t
t0
( p) is invariant under changes of parametrization and

Euclidean coordinate transformations

Here, we show that the folding of a material surface W t
t0( p) (cf. (3.4)) is independent

of parametrization, i.e. the choice of r( p) (cf. (3.1)), as well as of Euclidean coordinate
changes of the form

x̃ = Q(t)x + b(t), (C1)

where Q(t) ∈ SO(3) and b(t) ∈ R
3 are smooth functions of time. The invariance of

W t
t0( p) implies that W̃ t

t0( p) = W t
t0( p), where (̃·) denotes quantities expressed as a

function of the new x̃−coordinate, and (·) the same quantity expressed in terms of the
original x−coordinate. We note that this is a stronger property than objectivity (Truesdell
& Noll 2004).

To show this invariance, it suffices to note that W t
t0( p) is the Weingarten map of a

surface M(t) parametrized by r̂t
t0( p) = F t

t0[r( p)] ((3.1) and figure 2a), and recall that the
Weingarten map is independent of the parametrization r̂t

t0( p) (Kuhnel & Hunt 2015). This
property still holds in our context where r̂t

t0( p) is a composition of the parametrization of
the initial surfaceM(t0) and the action of F t

t0 , which is affected by (3.10). This completes
the proof of Proposition 1.

Appendix D. Lagrangian spiking points and curves

Here, we derive the analytical expressions for the Lagrangian spiking point rsp = r(psp)
and Lagrangian spiking curve γsc = r(psc), i.e. where the Lagrangian backbone of
separation B(t0) connects with the wall.

D.1. Compressible flows
Because of the no-slip condition, the wall is invariant, which implies

W̄ t
t0(rη=0( p)) = 0. (D1)

Therefore, to identify psp and psc, we derive the Weingarten map infinitesimally close
to the wall W̄ t

t0(rη=δη( p)) by Taylor expanding W̄ t
t0(rη( p)) along η and using (D1),

which gives

W̄ t
t0(rδη( p)) = ∂ηW̄ t

t0(rη( p))|η=0︸ ︷︷ ︸
∂ηW̄ η( p)|η=0

δη + O(δη2). (D2)

Using ∂ηW̄ η( p)|η=0, we calculate eigenvalues and eigenvectors of W̄ t
t0(rδη( p)) to the

leading order in η. Therefore, we use (D2) and the criteria described in Proposition 2 to
determine psp and psc.

To gain further insight into ∂ηW̄ η( p)|η=0 we express it in terms of the spatial derivatives
of Eulerian quantities

∂ηW̄ t
t0(rη( p))|η=0 = ∂η

∫ t

t0

˙̄W τ
t0( p)|η=0 dτ =

∫ t

t0
∂η

˙̄W τ
t0( p)|η=0 dτ, (D3)

where ˙̄W t
t0( p) = Ẇ t

t0( p) (cf. (4.1a,b)) is evaluated along trajectories of (2.1a–d). Because
of the no-slip condition on the wall, the convective term in the material derivative of
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˙̄W t
t0( p) is identically zero at η = 0. Assuming a flat no-slip wall and using (D1) we have

W t
t0(rη=0( p)) = 0. (D4)

Since the wall is a flat invariant set, 1Γ
t
t0( p)|η=0 = I . Using (D4) and (B4) we have

Bt
t0( p)|η=0 = 0. (D5)

Using (B4), (D4), (D5), and assuming a flat no-slip wall, we obtain

∂ηW̄ t
t0( p)|η=0 =

⎛⎜⎜⎜⎝
∫ t

t0
∂uuηf3(rη( p), τ )|η=0 dτ

∫ t

t0
∂vuηf3(rη( p), τ )|η=0 dτ∫ t

t0
∂uvηf3(rη( p), τ )|η=0 dτ

∫ t

t0
∂vvηf3(rη( p), τ )|η=0 dτ

⎞⎟⎟⎟⎠ . (D6)

A similar expression can be obtained for curved boundaries.

D.2. Incompressible flows
In the case of incompressible flows, by differentiating the continuity equation and using
the no-slip condition on the wall, we obtain

∂uu(∂uf1 + ∂vf2 + ∂ηf3)|η=0 = 0 → ∂uuηf3|η=0 = 0. (D7)

Similarly, we can get ∂uvη f3|η=0 = ∂vvη f3|η=0 = 0, therefore we have

∂ηW̄ τ
t0( p)|η=0 = 0. (D8)

Therefore the leading-order contribution in (D2) is O(δη2), which is given by

W̄ t
t0(rδη( p)) = ∂ηηW̄ t

t0(rη( p))|η=0︸ ︷︷ ︸
∂ηηW̄ η( p)|η=0

δη2

2
+ O(δη3). (D9)

We can use ∂ηηW̄ η( p)|η=0 to compute the eigenvalues and eigenvectors of W̄ t
t0(rδη( p))

to the leading order in η. We express ∂ηηW̄ η( p)|η=0 in terms of the spatial derivatives of
Eulerian quantities as

∂ηηW̄ t
t0(rη( p))|η=0 = ∂ηη

∫ t

t0

˙̄W τ
t0( p)|η=0 dτ =

∫ t

t0
∂ηηẆ τ

t0( p)|η=0 dτ. (D10)

Using the same arguments as in Appendix D, we obtain

∂ηηW̄ t
t0( p)|η=0 =

⎛⎜⎜⎜⎝
∫ t

t0
∂uuηηf3(rη( p), τ )|η=0 dτ

∫ t

t0
∂vuηηf3(rη( p), τ )|η=0 dτ∫ t

t0
∂uvηηf3(rη( p), τ )|η=0 dτ

∫ t

t0
∂vvηηf3(rη( p), τ )|η=0 dτ

⎞⎟⎟⎟⎠ .

(D11)
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Appendix E. Eulerian spiking point and curves

We derive analytical expressions for the Eulerian spiking point and curves similar to their
Lagrangian counterparts in Appendix D. The Eulerian spiking point and curve is defined
as the point or curve that connects the Eulerian backbone of separation B(t) with the wall.
Because the wall is an invariant set, we obtain

Ẇ t
t0(rδη( p)) = ∂ηẆ t

t0(rη( p))|η=0︸ ︷︷ ︸
∂ηẆ η( p)|η=0

δη + O(δη2). (E1)

To determine the Eulerian spiking point and curves, similar to Appendix D, we derive
analytical expressions for the leading-order terms in η of Ẇ t

t0(rη( p)) at |η=0 for
compressible and incompressible flows as

compressible: ∂ηẆ t
t0( p)|η=0 =

(
∂uuηf3(rη( p), t)|η=0 ∂vuηf3(rη( p), t)|η=0

∂uvηf3(rη( p), t)|η=0 ∂vvηf3(rη( p), t)|η=0

)
, (E2)

incompressible: ∂ηηẆ t
t0( p)|η=0 =

(
∂uuηηf3(rη( p), t)|η=0 ∂vuηηf3(rη( p), t)|η=0

∂uvηηf3(rη( p), t)|η=0 ∂vvηηf3(rη( p), t)|η=0

)
.

(E3)

Comparing (E3) and (E2) with (D11) and (D6) shows that, for steady flows, the Eulerian
spiking point and curve coincide with the Lagrangian spiking point and curve.

Appendix F. Creeping flow around a rotating cylinder

Klonowska-Prosnak & Prosnak (2001) derived an analytical solution of a creeping flow
around a fixed rotating circular cylinder close to an infinite plane wall moving at a constant
velocity (figure 6). If u and v denote the velocity components along and normal to the wall,
the solution is given by the following complex function:

u(ζ ) − iv(ζ ) = − Uw

2 log a

[
2 log

|ϕ|
a

+ μ

2ϕ
(ζ ∗ − ζ )(ϕ − 1)2

]
+ σ(ϕ − 1)2

[
iμζ ∗

2

(
a
ϕ2 + 1

a

)
− 1

ϕ

(
a + 1

a

)
+ 1

2a

(
a2

ϕ2 − 1
)]

+ σ

[
a + 1

a
+ i

(
a
ϕ∗ − ϕ∗

a

)]
, (F1)

where

i = √−1, ζ = x + iy, ϕ = ϕ(ζ ) = 1 + iμζ

1 + μζ
, (F2a–c)

with (·)∗ denoting the complex conjugate operator. The constants a, μ and σ describe the
geometry and the kinematics of the cylinder, and are defined as

a = Rc + yc − √
y2

c − R2
c

Rc + yc + √
y2

c − R2
c
, μ = 1√

y2
c − R2

c
, σ = a

a2 − 1

(
− Uw

2 log a
+ 2Ωa2

μ(a2 − 1)2

)
.

(F3a–c)

In (F3a–c) Uw denotes the velocity of the wall and Rc the radius of the cylinder initially
centred at (0, yc), and rotating about its axis with angular velocity Ω . Following the
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procedure described in Miron & Vétel (2015), by the linearity of Stokes flows, substituting
x and u in (F1) with x − Uwt − β

ωc
cos(ωct) and u − Uw, we obtain the velocity field

developing close to a rotating cylinder, whose centre moves parallel to a fixed wall with
velocity Uc = U0 + β cos(ωt), where U0 = −Uw.

Appendix G. Steady flow past a mounted cube

We consider the flow around a cube placed on a wall located at x3 = 0, with h = 1 the
length of the edge of the cube. The finite difference code Xcompact3d (Laizet & Lamballais
2009; Laizet & Li 2011) was used to solve the incompressible Navier–Stokes equations at
a Reynolds number Re = U∞h/ν = 200, based on the free-stream velocity U∞, h and the
kinematic viscosity ν. The computational domain is Lx1 × Lx2 × Lx3 = 12h × 3h × 3h,
where x1, x2 and x3 are the streamwise, spanwise and transverse direction, respectively.
The cube is centred on x1 = 4.5h and x2 = 1.5h. The domain is discretized on a Cartesian
grid (stretched in the x3-direction) of 481 × 129 × 129 points, with a sixth-order finite
difference compact scheme in space, while the time integration is performed with a
3rd order Adams–Bashforth scheme with a time step Δt = 5 × 10−5h/U∞. A specific
immersed boundary method is used to model the solid cube and to impose a no-slip
condition on its faces (Gautier, Laizet & Lamballais 2014). At the bottom wall, a
conventional no-slip condition is imposed, while at the top and lateral walls, a free-slip
condition is chosen. A laminar Blasius velocity profile is prescribed at the inlet section,
with a boundary layer thickness of h/4. Finally, at the outlet, a convective equation is
solved.

Appendix H. Laminar separation bubble flow

The flat-plate LSB flow is computed using a high-order discontinuous Galerkin spectral
element method (Kopriva 2009; Klose et al. 2020a) for the spatial discretization of the
compressible Navier–Stokes equations and explicitly advanced in time with a fourth-order
Runge–Kutta scheme. The solution is approximated on a seventh-order Legendre–Gauss
polynomial basis yielding an 8th order accurate scheme. The computational domain
is Lx1 × Lx2 × Lx3 = 200δ∗

in × 10δ∗
in × 15δ∗

in, discretized with a total of 9600 high-order
elements (total of 4 915 200 degrees of freedom per equation). The Reynolds number is
Reδ∗

in
= U∞δ∗

in/ν = 500, based on the free-stream velocity U∞, the height of the inflow
boundary layer displacement thickness δ∗

in and the kinematic viscosity ν. The free-stream
Mach number is 0.3. At the inlet and outlet, a Blasius profile, corrected for compressible
flow, is prescribed and the wall is set to be isothermal. The inflow profile is modified by
Uin = UBlasius(1 + 0.1 cos (2πx2/Lx2)) to induce a spanwise modulation of the LSB. To
avoid spurious oscillations at the outflow boundary, a spectral filter is applied for elements
x1/δ

∗
in > 160. A modified free-stream condition is prescribed at the top boundary, with a

suction profile for the lateral velocity component S(x1)/U∞ = as exp [−bs(x1/δ
∗
in − cs)],

according to Alam & Sandham (2000), and a zero gradient for the streamwise component.
The coefficients for the steady case are as = 1/5, bs = 1/50 and cS = 25. For the
unsteady case, the constant coefficient cs is replaced by a time-dependent function cs(t) =
30 + 5 sin (2πft) with f = 1/20 to induce a periodically oscillating LSB. The Lagrangian
fluid particles composing the material sheets are traced at run time with a third-order
Adam–Bashforth scheme and the flow field is interpolated onto the particle positions
using high-order Lagrange interpolation polynomials. Once the flow map is obtained, a
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smoothing operation is performed on Lagrangian curvature fields to filter out numerical
noise.

Appendix I. Selection of t0 and T for computing the backbone of separation

In general unsteady flows f (x, t), the flow map F t0+T
t0 depends on both the initial time t0

and on the Lagrangian time interval T . Even if the final time tf = t0 + T is the same for
different combinations of t0 and T , the spike geometry as well as any Lagrangian analysis
will be different, reflecting the appropriate features of F t0+T

t0 . This differs in the case of
steady or time-periodic flows. In practice, the selection of t0 and T depends on technical
constraints and, or the separation analysis of interest. We provide two examples in which
t0 or T should be fixed.

I.1. Active flow control in unsteady flows
There are several aerodynamic problems in which flow separation causes drops in
performance or even catastrophic consequences. In these cases, unexpected external flow
disturbances drive the system away from the desired working condition. Active flow
control aims to design a controller that best prevents flow separation, given a set of
available sensors and actuators. In this scenario, one would ideally consider a moving
t0 corresponding with the current time, T = 0, and design the controller to prevent the
formation of an Eulerian backbone of separation, or minimize it in some metric. This ideal
scenario would best prevent the formation of material spikes by continuously reacting to
general (hence unsteady) perturbations.

Sensors and actuators, however, invariably introduce delays. These can be due to a
minimum observation time required to provide the estimated flow velocity with the desired
signal-to-noise ratio, or the minimum time needed for the actuators to provide a control
action, etc. Considering these technical limitations and denoting the maximum of these
delays by Tc, the best (close to instantaneous) setting for active flow control would be
computing the separation backbone over the moving time window [t0 − Tc, t0].

I.2. On- and off-wall dynamics near a no-slip boundary
As a second problem, assume one wants to study the on- and off-wall separation dynamics
in an unsteady flow near a no-slip boundary. For example, consider the flow generated by
a rotating circular cylinder close to an infinite plane wall moving at a constant velocity
analysed in § 7.4. By computing the Lagrangian backbone of separation over the time
interval [t0, t0 + T], we observe that for small T , the separating backbone has a clear
connection to the wall (cf. figure 7a–c). By contrast, for larger T , the motion of the
same fluid patch becomes governed by the off-wall dynamics (cf. figure 7d,e), losing its
connection to the near-wall backbone. Therefore, by analysing different increasing T , our
theory can identify the transition between on-wall and off-wall separation without a priori
assumptions. Here t0 is fixed to the start of the experiment corresponding to the time when
the cylinder starts moving from rest.
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