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Abstract Lagrangian techniques, such as the finite-

time Lyapunov exponent (FTLE) and hyperbolic

Lagrangian coherent structures, have become popular

tools for analyzing unsteady fluid flows. These tech-

niques identify regions where particles transported by

a flow will converge to and diverge from over a finite-

time interval, even in a divergence-free flow. Lagran-

gian analyses, however, are time consuming and

computationally expensive, hence unsuitable for

quickly assessing short-term material transport. A

recently developed method called Objective Eulerian

Coherent Structures (OECSs) (Serra and Haller in

Chaos Interdiscip J Nonlinear Sci 26(5):053110, 2016)

rigorously connected Eulerian quantities to short-term

Lagrangian transport. This Eulerian method is faster

and less expensive to compute than its Lagrangian

counterparts, and needs only a single snapshot of a

velocity field. Along the same line, here we define the

instantaneous Lyapunov Exponent, the instantaneous

counterpart of the FTLE, and connect the Taylor series

expansion of the right Cauchy-Green deformation

tensor to the infinitesimal integration time limit of the

FTLE. We illustrate our results on geophysical fluid

flows from numerical models as well as analytical

flows, and demonstrate the efficacy of attracting and

repelling instantaneous Lyapunov exponent structures

in predicting short-term material transport.

Keywords Lagrangian coherent structures �
Objective Eulerian coherent structures � Dynamical

systems � Fluid mechanics � Lagrangian transport �
Cauchy-Green deformation tensor � Lyapunov
exponents � Invariant manifolds � Geophysical fluids

1 Introduction

Lagrangian methods, such as the finite-time Lyapunov

exponent (FTLE) and Lagrangian coherent structures

(LCSs), have become a popular means of analyzing

the Lagrangian transport structure of unsteady fluid

flows and other dynamical systems [1–32]. These

predict the dominant particle deformation patterns in a

fluid flow over a time interval of interest, as well as

which regions of the flowwill undergo the greatest and

least amounts of stretching. However, Lagrangian

methods rely on the numerical integration of particle
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trajectories, making such methods computationally

expensive and time consuming. Furthermore, the

integration of particle trajectories requires a velocity

field which is sufficiently resolved in both time and

space in order to accurately calculate the particle’s

motion. Beyond the issues of spatiotemporal resolu-

tion and computational time, there are applications in

which one is interested in understanding short-time

material transport because past or future velocities are

not available or there is no obvious choice of the time

horizon for considering particle motion, i.e., the

integration time T. This limits the ability of research-

ers to compute Lagrangian diagnostics from experi-

mental or observational data, such as from particle

image velocimetry (PIV) in laboratory-scale experi-

mental fluid mechanics [33–36], biological applica-

tions [6, 37–39], such as cardiovascular flows [40–44],

or from geophysical data, such as ocean currents

[45–48] or wind measurements [49, 50], necessitating

the use of simulation-based flow models instead.

Additionally, model data takes time to generate,

limiting its usefulness for real-time time-critical

applications requiring an emergency response

[51–53], such as a hazardous incident, e.g., a radioac-

tive material leak [54], an oil spill [55–58], or ocean

search-and-rescue [59–61]. Furthermore, even when

model data is readily available it may not be reliable

[51, 62–64]. Thus, newmethods of analyzing unsteady

fluid flows are required, which do not depend on

particle advection schemes, and could be implemented

experimentally in a local spatial neighborhood using

only Eulerian information.

This gap has been filled by the recent variational

theory of Objective Eulerian Coherent Structures

(OECSs) [65], which assess short-term material

transport in two-dimensional unsteady flows using

only Eulerian quantities by exploiting the connection

between the Cauchy-Green and the Eulerian rate-of-

strain tensor, which is the symmetric part of the

velocity field gradient. OECSs have successfully

predicted short-term transport in several geophysical

flows [66, 67], including search-and-rescue simula-

tions in ocean field experiments [61]. Other methods

such as the trajectory divergence rate [68], the

attraction and repulsion rates [49, 69], and Eulerian

material spike formation [70–72] have been subse-

quently developed to analyze unsteady fluid flows.

Motivated by [65], most of these methods are derived

from the Eulerian rate-of-strain tensor. This allows for

dynamical systems to be analyzed without the need for

particle trajectory integration, which reduces the

amount of time and computational power necessary

for analysis. Furthermore, being based on gradients,

these methods can be calculated from measurements

using as few as nþ 1 points in the neighborhood of a

point in n dimensional space, and at one instant in

time. For example, Nolan et al. [49] calculated the

attraction rate field from experimental two-dimen-

sional environmental fluid measurements using only 3

sampling locations to estimate the velocity gradient.

This study builds upon the work mentioned above

and further explores the connection between Eulerian

quantities and short-term material transport. In partic-

ular, as OECSs [65] are the instantaneous limit of

variational LCSs [21], here we define the instanta-

neous Lyapunov Exponents (iLEs) as the Eulerian

limits of the backward and forward-time FTLE as

integration time goes to zero. In addition to this,

higher-order Eulerian approximations to the right

Cauchy-Green deformation tensor than those currently

used are derived—modified Rivlin-Ericksen tensors—

expanding in the integration time T. Using this

expansion, high-order approximations are derived

for both the backward-time and forward-time FTLE

fields, expanding in the integration time T, and using

techniques from matrix perturbation theory. Analyti-

cal approximations are derived for the FTLE field for

well-known examples, such as the time-varying two-

dimensional double-gyre and the three-dimensional

ABC flow, which have previously only had their FTLE

calculated using numerical particle advection

schemes. Examples based on geophysical fluid simu-

lation data are also explored; an atmospheric data set

and an oceanic data set. We note that an experimental

example has also been considered [49].

Furthermore, a new Eulerian diagnostic tool is

introduced—instantaneous Lyapunov exponent struc-

tures, or iLES, which are instantaneous iLE ridges.

The iLES are shown to be the limit of FTLE ridges

(i.e., FTLE-LCS) as the integration time T goes to 0,

and are for general n-dimensional dynamical systems.

Thus, iLES provide a straightforward approach to

identifying the major codimension-1 hyperbolic fea-

tures dominating particle (or general phase space)

deformation patterns, as the same ridge detection

methods used for the FTLE field can be applied to the

attraction and repulsion rate fields. It is demonstrated

using analytic and realistic flows that the iLES do
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indeed identify the important cores of particle defor-

mation patterns over short times. Moreover, as in the

case of OECSs, both attracting and repelling features

can be determined simultaneously as they are both

based on the instantaneous velocity field gradient—

one need not perform two separate particle trajectory

integrations, one in forward-time, the other in back-

ward-time. The computational savings in using only

the instantaneous velocity field, and not particle

trajectory integration, is a highlight of the method,

making it a candidate for use in real-time applications.

The paper is organized as follows. Section 2 sets up

the notation and makes connection with previous

literature. Section 3 considers instantaneous approx-

imations of the right Cauchy-Green tensor and FTLE

field. Section 4 derives a new Eulerian diagnostic,

iLES, as the FTLE ridge in the instantaneous limit. In

Sect. 5, numerous examples are provided, comparing

the error of the Eulerian approximation with the

benchmark FTLE field (using particle advection

algorithms from [73, 74]), demonstrating the effec-

tiveness of iLES, and comparing the attraction rate

field to the backward-time FTLE field. The attraction

rate and backward-time FTLE were focused on due to

their usefulness in predicting where particles advected

by a flow will converge, making themmore relevant to

real-world scenarios. Finally, Sect. 6 provides con-

clusions and future directions.

2 Setup and notation

Consider the dynamical system,

d

dt
xðtÞ ¼ vðxðtÞ; tÞ;

x0 ¼ xðt0Þ;

x 2 U � Rn; t 2 I � R:

ð1Þ

This system can be analyzed using Lagrangian (par-

ticle trajectory) methods, by first calculating the flow

map, x0 7!xt ¼ Ft
t0
ðx0Þ, for some time interval of

interest, ½t0; t� � I, where t could be greater than or less

than the initial time, t0. The flow map, Ft
t0
: U ! U, is

given by,

Ft
t0
ðx0Þ ¼ x0 þ

Z t

t0

vðFs
t0
ðx0Þ; sÞ ds; ð2Þ

and is typically given numerically [1, 4, 75, 76] over

the integration time t � t0. Taking the gradient of the

flow map, rFt
t0
ðx0Þ, the right Cauchy-Green strain

tensor for the time interval of interest is,

Ct
t0
ðx0Þ ¼ rFt

t0
ðx0Þ>rFt

t0
ðx0Þ; ð3Þ

where ð>Þ denotes the matrix transpose. The right

Cauchy-Green tensorCt
t0
ðx0Þ physically represents the

material deformation of infinitesimal volume ele-

ments, and as a matrix, is symmetric and positive-

definite, giving positive eigenvalues which can be

ordered as,

k1 � k2 � � � � � kn; ð4Þ

with associated normalized eigenvectors,

nki ; i 2 f1; . . .; ng: ð5Þ

From the maximum eigenvalue of the right Cauchy-

Green tensor, the finite-time Lyapunov exponent

(FTLE) [1, 2] can be defined as,

rtt0ðx0Þ ¼
1

2jT j logðknÞ; ð6Þ

where T ¼ t � t0 is the (signed) elapsed time, also the

integration time, as mentioned above. Taking the

instantaneous spatial gradient of the velocity field

vðx; tÞ in (1), we consider the Eulerian rate-of-strain

tensor [65, 77–80],

Sðx; tÞ � 1

2

�
rvðx; tÞ þ rvðx; tÞ>

�
; ð7Þ

which is a symmetric matrix, yielding eigenvalues

which are real and can be ordered as,

s1 � s2 � � � � � sn; ð8Þ

with associated normalized eigenvectors,

ei; i 2 f1; . . .; ng: ð9Þ

Taylor-expanding Ct
t0
ðx0Þ in t, [65] found that Sðx; tÞ

governs, at leading order, short-time material defor-

mation in the phase space, and then derived precise

definitions for OECSs using the same concepts already

developed for variational LCSs. OECSs can be of

three types: hyperbolic (attracting and repelling),
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parabolic and elliptic. Hyperbolic OECSs—the rele-

vant one in this context—are the instantaneously most

attracting and repelling structures in a dynamical

system,mimicking the role of stable and unstableman-

ifolds over short times. Parabolic OECSs are short-

term jet-type structures, serving as short-term path-

ways for material transport. Elliptic OECSs are short-

term vortical structures. We now proceed with the

development of iLES, and then detail their comparison

with the hyperbolic OECSs.

3 Expansion of the right Cauchy-Green tensor

in the infinitesimal integration time limit

Considering the n-dimensional dynamical system (1),

for small |T|, one can perform a Taylor series

expansion of Ct
t0
ðxÞ in T as,

Ct
t0
ðxÞ ¼ 1þ 2TSðx; t0Þ þ T2Bðx; t0Þ

þ 1

2
T3Qðx; t0Þ þ OðT4Þ;

ð10Þ

where 1 is the n� n identity and where S,B, andQ are

the first three Rivlin-Ericksen tensors [77], re-scaled to

put them in a form which makes (10) more amenable

to matrix perturbation analysis for small |T. The S

matrix was defined in (7), and B and Q are given by,

Bðx; t0Þ �
1

2

h
raðx; t0Þ þ raðx; t0Þ>

i

þrvðx; t0Þ>rvðx; t0Þ; ð11Þ

where the acceleration field, aðx; t0Þ, is,

aðx; t0Þ ¼
d

dt
vðx; t0Þ ¼

o

ot
vðx; t0Þ þ vðx; t0Þ � rvðx; t0Þ;

ð12Þ

where ð�Þ represents the usual dot product on Rn. The

acceleration aðx; t0Þ is the total time derivative of

vðx; t0Þ, that is, the acceleration measured along a

trajectory (i.e., in a Lagrangian frame). The matrix Q

is,

Q � 1

3
r da

dt
þ r da

dt

� �>
" #

þ rvð Þ>raþ rað Þ>rv
h i

:

ð13Þ

Details are given in Appendix ‘‘Expansion of the right

Cauchy-Green tensor in the integration time’’.

If s1 (respectively, sn) is denoted as s� (sþ), with
corresponding eigenvector e� (eþ), the main result on

the short-time T\0 (T [ 0) approximation of the

backward (forward) time FTLE field can be summa-

rized as follows, with terms through second order in T

included,

rtt0ðxÞ ¼ 	 s	 	 a	T 	 b	T
2 þOðT3Þ;

for signðTÞ ¼ signðt � t0Þ ¼ 	1;
ð14Þ

where,

a	 ¼ �s2	 þ 1

2
l1	;

b	 ¼ 4

3
s3	 � s	l1	 þ 1

4
l2	;

ð15Þ

with,

l1	 ¼ e>	Be	;

l2	 ¼ e>	Qe	 þ e>	Bn1	 � l1	e
>
	n1	:

ð16Þ

where n1	 is the vector solution of,

ðS� s	1Þn1	 ¼ �ðB� l1	1Þe	: ð17Þ

where the dependence on x and t0 is understood, the

‘-’ terms correspond to T\0 and the ‘þ’ terms

correspond to T [ 0. We refer to the approximation of

the finite-time Lyapunov exponent field, based on the

instantaneous velocity field vðx; t0Þ, as the instanta-

neous Lyapunov exponent, or iLE. The details are in

the Appendices, as well as a simplified method for

obtaining l2	 in the case of two-dimensional flows

which does not require calculating n1	.
In the infinitesimal limit, from (14), the iLE field is,

rtt0ðxÞ ¼ 	s	ðx; t0Þ as t � t0 ! 0	 ð18Þ

Note that the connection between the proportionality

of the eigenvalues of Sðx; t0Þ and the FTLE field for

small |T| was suggested by [81], whereas here the

equality in the limit as jTj ! 0 is proven. Further-

more, we have provided a framework to explicitly

write the expansion of the FTLE field through any

order in T, via a straightforward extension of (10)

through order k in T. We also note that the eigenvec-

tors of Sðx; t0Þ and Ct
t0
ðxÞ are equal in the limit as

T goes to zero (see the Appendices).

For the n ¼ 2 dimensional case with x ¼ ðx; yÞ,
with the vector field denoted v ¼ ðu; vÞ, the
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instantaneous attraction and repulsion rates are given

analytically by,

s	ðx; t0Þ ¼ 1

2
divðvðx; t0ÞÞ 	 1

2
eTotðx; t0Þ: ð19Þ

in terms of commonly used fluid quantities [81–86],

where,

divðvðx; t0ÞÞ ¼ r � vðx; t0Þ ¼ ou

ox
þ ov

oy
; ð20Þ

is the divergence of the flow field, eNðx; t0Þ ¼ ou
ox
� ov

oy
is

the normal component of the strain rate, eSðx; t0Þ ¼
ou
oy
þ ov

ox
is the shear component of the strain rate, and,

eTotðx; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Nðx; t0Þ þ e2Sðx; t0Þ

q
; ð21Þ

is the total strain rate.

For an incompressible (i.e., divergence-free) two-

dimensional flow, notice s	ðx; t0Þ ¼ 	1
2
eTotðx; t0Þ, as

noted by [80], and thus,

rtt0ðxÞ ¼ 	1

2
eTotðx; t0Þ; ð22Þ

as t � t0 ! 0, that is, the forward and backward FTLE

are the negative of each other, hence have the same

structure, in the infinitesimal integration time limit.

Similarly, for incompressible flows, attracting and

repelling OECSs are perpendicular to each other and

their intersection is called an objective saddle point

[65]. While the attraction and repulsion rate fields are

the same in the infinitesimal limit (differing only by a

minus sign), the corresponding eigenvector fields,

e	ðx; t0Þ, need not be the same, and in fact are

perpendicular almost everywhere. This has implica-

tions, as shown in an example below, for approximat-

ing the instantaneous most attracting or repelling

material surfaces.

4 Definition of instantaneous Lyapunov exponent

structures as ridges of iLE and their significance

for finite-time transport

Previous work [1, 2, 7, 10, 11, 14, 15, 18, 20] has

demonstrated that hyperbolic LCSs can be identified

as ridges of the FTLE field. While there are different

mathematical definitions for what constitutes a ridge, a

co-dimension 1 ridge can be thought of as the

generalization of the concept of local maxima. For

this study, hyperbolic LCSs will be identified as C-

ridges of the FTLE field. C-ridges were first described

in [87], as ridges of the FTLE which are orthogonal to

the direction of maximal stretching. They are defined

as,

r[ 0; ð23Þ

rr � nkn ¼ 0; ð24Þ

ðHr � nknÞ � nkn\0; ð25Þ

where the dependence on x, t0, and t is understood, and

Hr denotes the Hessian of the FTLE field. C-ridges are

advantageous over other definitions of ridges for the

FTLE field, as they only rely on invariants of the right

Cauchy-Green strain tensor.

We propose an instantaneous approximation to the

traditional finite-time-FTLE-based hyperbolic LCS:

the instantaneous Lyapunov exponent structure. Fol-

lowing [87], we seek co-dimension 1 manifolds in the

phase space which maximize local stretching and are

orthogonal to the direction of maximal stretching. For

a flow Ft
t0
, the FTLE field provides a measure of

stretching over a given time period. As�s� and sþ are

the limits of the backward-time and forward-time

FTLE fields as integration time goes to 0, we seek

ridges of these fields which are orthogonal to the

direction of maximal stretching. A ridge of the iLE is

an instantaneous Lyapunov exponent structure, or

iLES. The direction of maximal stretching in a flow

over a time interval is the given by the eigenvector of

the right Cauchy-Green strain tensor associated with

the largest eigenvalue. As the eigenvectors of the right

Cauchy-Green and Eulerian tensors are equal in the

infinitesimal-time limit, we seek ridges of �s� and sþ
which are orthogonal to their associated eigenvector.

Following [87], these ridges will be referred to as S-

ridges. S-ridges are thus the limit of C-ridges as

integration time goes to zero. An attracting iLES is a

ridge of �s�, thus it can be defined as a trench of s�,
that satisfies the following conditions.

Definition 1 An attracting iLES of the system (1) is

a co-dimension 1 manifold which satisfies,

s�\0; ð26Þ

rs� � e� ¼ 0; ð27Þ

ðHs� � e�Þ � e� [ 0: ð28Þ
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where the dependence on x, t0, and t is understood.

Additionally, as a ridge of sþ, a repelling iLES is

defined as follows.

Definition 2 A repelling iLES of the system (1) is a

co-dimension 1 manifold which satisfies,

sþ [ 0; ð29Þ

rsþ � eþ ¼ 0; ð30Þ

ðHsþ � eþÞ � eþ\0: ð31Þ

where the dependence on x, t0, and t is understood.

These definitions are illustrated schematically,

along with the effect on a local fluid parcel, in two

dimensions in Fig. 1.

In two-dimensional systems, OECSs and iLESs can

be identified. Attracting OECSs are one-dimensional

curves (ci; i 2 f1; . . .;Ng) tangent to the eigenvector

eþ and emanating from minima of s�, which demar-

cate their attracting core. The instantaneous attraction

rate to ci is quantified exactly by the local s� field [65].

Similarly, repelling OECSs are tangent to the eigen-

vector e�, and emanate from maxima of sþ, which
quantify exactly their instantaneous repulsion rate.

Equation (27) implies that attracting iLESs are also

parallel to eþ almost everywhere, while (28) requires

that the eþ-line is within a concave trench of s�. This
further condition, therefore, can lead to cases in which

there are attracting OECSs but not attracting iLESs.

Similar considerations hold for repelling structures.

However, it should be noted that iLESs are not

restricted to two-dimensional flows, as OECSs are, but

generalize to n-dimensional systems.

5 Examples

In this section, several examples of the calculation of

the iLE field (and iLESs) are given, with comparisons

to the usual FTLE approach. Section 5.1 considers a

nonlinear saddle flow which can be worked out

entirely analytically. Section 5.2 considers the time-

dependent double-gyre, for which the velocity field

can be written analytically. Sections 5.3 and 5.4

examine iLESs in realistic time-dependent two-di-

mensional geophysical flows. Finally, Sect. 5.5

explores the use of iLESs in a fully coupled three-

dimensional flow.

5.1 Two-dimensional nonlinear saddle flow

Consider the following nonlinear saddle flow with

cubic term,

_x ¼ x;

_y ¼ �yþ y3;
ð32Þ

in the domain U ¼ fðx; yÞ 2 R2
��jyj\1g. A portion of

the vector field is depicted in the inset of Fig. 2. These

two uncoupled ordinary differential equations admit

the explicit solutions,

a b

c

short-time attraction

short-time repulsion

repelling iLES

attracting iLES

trench of        field 

Fig. 1 a Schematic of the

attracting rate field,

s�ðx; t0Þ, at a fixed time t0,

showing an attracting iLES,

a trench of the s� field, along

with b the short-term

deformation of an

infinitesimal area element

(i.e., a fluid blob) centered

on an attracting iLES, where

T [ 0 is small. c A
schematic of a repelling

iLES and the effect on a

fluid blob over small time

T [ 0
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xðtÞ ¼ x0e
t;

yðtÞ ¼ y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� y20Þe2t þ y20

p ;
ð33Þ

where the initial condition at time t0 ¼ 0 is

x0 ¼ ðx0; y0Þ. The right Cauchy-Green deformation

tensor for a backward integration time T\0, is,

CT
0 ðx0Þ ¼

e2T 0

0
e4T

ðð1� y20Þe2T þ y20Þ
3

2
64

3
75; ð34Þ

which yields a backward time FTLE of

rT0 ðx0Þ ¼ � 1

2T
log

 
e4T

ðð1� y20Þe2T þ y20Þ
3

!
: ð35Þ

Using Taylor series approximations for small |T|, the

backward FTLE can be written as an expansion in T

for small |T|,

rT0 ðx0Þ ¼ ð1� 3y20Þ þ 3y20ð1� y20ÞT
� 2y20ð1� y20Þð1� 2y20ÞT2 þOðT3Þ:

ð36Þ

See Appendix ‘‘Details for the examples’’ for details.

The FTLE can be approximated by the first, second,

and third terms (the zeroth-order, first-order, and

second-order in T, respectively) using the procedure

outlined in Sect. 3. The key symmetric matrices in the

expansion of C are S, B, and Q, which are given

explicitly by,

Sðx0Þ ¼
1 0

0 ð�1þ 3y20Þ

" #
;

Bðx0Þ ¼
2 0

0 ð2� 18y20 þ 24y40Þ

" #
;

Qðx0Þ ¼
8
3

0

0 ð�8
3
þ 56y20 � 192y40 þ 160y60Þ

" #
;

ð37Þ

Note that Sðx0Þ has a minimum eigenvalue

s�ðx0; y0Þ ¼ �1þ 3y20, the negative of which matches

the first term of (36), as prescribed by (14). The

eigenvalue s� has a corresponding normalized eigen-

vector e� ¼ ½0; 1�>. As shown in Appendix ‘‘Details

for the examples’’, the formulas of Sect. 3 for

approximating the true FTLE, (36), of the nonlinear

saddle, (32), through second-order in the integration

time T can be analytically verified for this example.

To illustrate the accuracy of the successive approx-

imations, Fig. 2 shows the root mean-squared error

(RMSE) for the FTLE field as a function of integration

Fig. 2 Root mean-squared error (RMSE) for successive

approximations of the backward-time FTLE field for the

nonlinear saddle (32) expanded in T: zeroth-order (blue), first-

order (magenta), second-order (black). Notice that the error

grows linear in |T|, quadratic in |T|, and cubic in |T|, respectively,

as shown more clearly in the log–log plot on the right
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time magnitude, |T|, over the domainU. Notice that, as

expected, the error grows linear in |T|, quadratic in |T|,

and cubic in |T|, for the zeroth-order, first-order, and

second-order approximations, respectively. The

attracting rate and the backward time FTLE field for

various integration times T are shown in Fig. 3.

Furthermore, we can demonstrate that the x-axis,

fy ¼ 0g, is an attracting S-ridge. Note that

s�ðx0; y0Þ ¼ �1þ 3y20\0 for y0 ¼ 0, satisfying the

attraction criterion, (26). Since

rs�ðx0; y0Þ ¼ ½0; 6y0�>, then along the x-axis we have
rs�ðx0; y0Þjy0¼0 � e� ¼ 0, satisfying the ridge

criterion, (27). Furthermore, along the x-axis,

ðHs� � e�Þ � e� ¼ 6[ 0, satisfying the concavity cri-

terion, (28). The attracting and repelling iLESs are

shown in Fig. 3e.

5.2 Two-dimensional time-varying double-gyre

flow

While the time-varying double-gyre does not admit an

explicit solution, as the previous example does, one

can still analytically approximate the FTLE field up to

first-order in T using the formulas of Sect. 3.

x

y 0

-0.4

0.4

-0.4 0 0.4

x

y

x

y

x

y

x

y

attracting iLES

repelling iLES

a

e

c

b

d

Fig. 3 Comparison of the

instantaneous attraction rate

(a), with FTLE fields of

backward non-dimensional

integration times T ¼ B �1,

c �2, and d �4. As the

integration time magnitude

increases, the average FTLE

values decreases, thus

comparing the exact values

of the heat-map is less

meaningful than comparing

the topography. For a

topographical analysis,

relatively high values are

shown in yellow and

relatively low values in dark

blue. A relative scale color

bar is shown on the right.

e The attracting and

repelling iLESs are shown in

blue and red, respectively,

with the vector field overlaid
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Consider the double-gyre flow as described in [1].

This flow comes from the Hamiltonian stream

function,

wðx; y; tÞ ¼ A sinðpf ðx; tÞÞ sinðpyÞ; ð38Þ

where,

f ðx; tÞ ¼ � sinðxtÞx2 þ ð1� 2� sinðxtÞÞx: ð39Þ

The velocity field, v ¼ ðu; vÞ, can be calculated as,

_x ¼ uðx; y; tÞ ¼ � ow
oy

¼ �Ap sinðpf ðx; tÞÞ cosðpyÞ;

_y ¼ vðx; y; tÞ ¼ ow
ox

¼ Ap cosðpf ðx; tÞÞ sinðpyÞ of
ox

ðx; tÞ:

ð40Þ

The domain for (x, y) is U ¼ ½0; 2� � ½0; 1�. Following
[1], parameters A ¼ 0:1,x ¼ 0:2p, and � ¼ 0:25 were

chosen.

From the gradient of this field (see Appendix

‘‘Details for the examples’’), it can be analytically

calculated via (22) that the zeroth-order approxima-

tion to the backward-time FTLE for an initial condi-

tion x0 ¼ ðx0; y0Þ at initial time t0 in the infinitesimal

integration time limit is,

s�ðx0; t0Þ ¼ �p2A

"
�2 sin2ðxtÞ

(
sin2ðpy0Þ

�
sin2ðpf Þð1� x0Þ2

þ 1

p
sinð2pf Þð1� x0Þ þ 1

p2
cos2ðpf Þ

�

þ cos2ðpy0Þ cos2ðpf Þð1� x0Þ2
)

þ cos2ðpy0Þ cos2ðpf Þ
�
1� 4� sinðxtÞð1� x0Þ

�#1=2
:

ð41Þ

where the dependence of f on ðx0; t0Þ is understood.

Note that the s�ðx0; t0Þ field, just like the vector field,
is a periodic function of t0 with period 2p=x. Note that
for t0 ¼ k2p=x, for some integer k, we have,

s�ðx0; t0Þ ¼ �p2Aj cosðpx0Þ cosðpy0Þj: ð42Þ

The first-order term in the backward integration

time T\0 can also be analytically determined. See

Appendix ‘‘Details for the examples’’ for details.

Figure 4 shows the root-mean-square error between

the backward-time FTLE field and the zeroth-order

(blue), first-order (magenta), and second-order (black)

approximations. In this figure, one can see that as the

integration time, |T|, goes to 0, the approximations

converge to the true (benchmark) FTLE field, as

expected. Note that the second-order term is more

sensitive to numerical errors than either the zeroth- or

first-order terms. Figure 5 shows a comparison of the

FTLE field for a short integration time, T ¼ �0:3

(left), with an approximation to first order in T (right).

As an incompressible two-dimensional flow, the

infinitesimal time limit of the attraction and repulsion

fields have the same structure (see (19)), differing only

by a minus sign, s�ðx0; t0Þ ¼ �sþðx0; t0Þ. However,
because they have different eigenvector fields, their S-

ridges according to the criteria in Sect. 4 are different.

For instance, at initial time t0 ¼ 0, s�ðx0; 0Þ and

�sþðx0; 0Þ are both given by the right-hand side of

(42). However, only the segment,

‘a ¼ fðx0; y0Þ 2 Ujx0 ¼ 1; 0:5\y0\1g; ð43Þ

meets the criteria for an attracting iLES (see the blue

curve in Fig. 5, bottom panel). While criterion (26) is

met almost everywhere, along the line x0 ¼ 1, the

eigenvector field e�ðx0; 0Þ switches from ½1; 0�> for

0:5\y0\1 to ½0; 1�> for 0\y0\0:5, which leads to

the concavity criterion, (28), only being satisfied along

‘a. The situation is reversed for sþðx0; 0Þ, for which
the eigenvector field eþðx0; 0Þ switches from ½0; 1�>

for 0:5\y0\1 to ½1; 0�> for 0\y0\0:5, which leads

to the concavity criterion, (31), only being satisfied

along the segment,

‘r ¼ fðx0; y0Þ 2 Ujx0 ¼ 1; 0\y0\0:5g ð44Þ

which meets the criteria for a repelling iLES (see the

red curve in Fig. 5, bottom panel). See Appendix

‘‘Details for the examples’’ for further details on the s�
and e� calculations.

These segments and their effect on nearby fluid

particles are better visualized in an extension of the

double-gyre flow to 3 dimensions, where we add a z

direction with no dynamics, _z ¼ 0. The attracting and

repelling segments, ‘a and ‘r, are extended to two-

dimensional surfaces, Sa and Sr for the three-dimen-

sional double-gyre flow and are shown in Figs. 6 and 7,

respectively. Figure 6 shows an attracting iLES (blue),

along with a blob of passive tracers (green). Mean-

while, Fig. 7 shows a repelling iLES (red), along with

blob of tracers (green). In both figures, the first row

shows the the initial configuration from two different
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angles, while the second row shows the configuration

after being advected by the flow for a time of 1.25 in

non-dimensional units. In Fig. 6, one can see that the

green blob, starting out as a sphere around a portion of

the iLCS, becomes squeezed toward and spread along

the iLES as the two are advected by the flow. In Fig. 7,

the green blob, starting as a sphere, spreads out and

away from the repelling iLES as they are advected by

the flow. These behaviors demonstrate that iLES are

indeed the instantaneous approximation of traditional

FTLE ridges in three dimensions. An animation for the

attracting iLES can be found at https://youtu.be/

NWxdG7BY0_o, and the repelling iLES at https://

youtu.be/ZkD3qBnrHL0.

5.3 Two-dimensional oceanographic flow

example

In this section, a realistic oceanic flow model is

employed to explore the methods described above,

using ocean surface velocity data from a Global Real-

Time Ocean Forecast System (Global RTOFS) [88]

Fig. 4 Root mean-squared error (RMSE) vs. |T| for successive

approximations of the backward-time FTLE field for the double-

gyre flow expanded in T: zeroth-order (blue), first-order

(magenta), second-order (black), showing the error growing

linear, quadratic, and cubic in |T|, respectively, as revealed more

clearly in a log-log plot (right)

Fig. 5 Top left: True backward-time FTLE field for the double-

gyre flow for an integration period of T ¼ �0:3. Top right: The
iLE approximation of the FTLE field to first-order in T, for the

same integration time T ¼ �0:3. The root mean-squared error

between these two fields is approximately 0.03 (see Fig. 4).

Bottom: The instantaneous Lyapunov exponent structures

(iLESs) are shown—the attracting structure in blue and the

repelling structure in red, both along x ¼ 1—with the vector

field overlaid. Parameters: A ¼ 0:1, x ¼ 0:2p, � ¼ 0:25, and
t0 ¼ 0
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model simulation for the Gulf of Mexico. This model

was run with a horizontal grid resolution of ð 1
12
Þ
 and

temporal resolution of 1 h, which was then interpo-

lated to a Cartesian grid with a horizontal resolution of

10 km. The fluid simulation forecast was for a 72 h

period beginning at 0000 UTC 25 July 2019, i.e., I ¼
½0000 UTC 25 July 2019, 0000 UTC 28 July 2019].

Figure 8 visually explores the connection between

the attraction rate and the FTLE field in a two-

dimensional oceanic flow.

Panel A shows the attraction rate field at t0 ¼ 0000

UTC 26 July 2019. Panels B, C, and D show the FTLE

field for 1, 4, and 24 h of backward-time integration,

initialized at time t0. It can be seen that the significant

Lagrangian transport structures over the time interval

examined are already present in the attraction rate

field. As the field is integrated backward in time the

transport structures become sharper and grow longer,

but do not change significantly. As the integration time

is increased, the transport patterns which are shown by

the attraction rate field become more sharply defined.

This relationship can be quantified by the Pearson

correlation coefficient, which is given in Fig. 9a. This

figure shows that for integration times up to 16 h, there

is a strong correlation ([ 0:7) between the attraction

rate and backward-time FTLE field.

This data set was also able to numerically verify the

relationship between the attraction rate, higher-order

instantaneous approximations, and the backward-time

FTLE field for a two-dimensional oceanic fluid flow.

This result is presented in Fig. 9b, c, which shows the

RMSE of these approximations compared with a

benchmark FTLE field, where integration is per-

formed backward in time from t0 ¼ 0000 UTC 26 July

2019. The blue line shows the RMSE for the attraction

rate, the magenta for the attraction rate with a first-

order correction term, and the black for the attraction

rate with a second-order correction. As |T| goes to 0,

the RMSE of all three approximations also goes to 0,

thus numerically verifying the relationships in Sect. 3

applied to a two-dimensional oceanic flow.

For this flow, it was further possible to verify that

iLESs are effective at predicting the Lagrangian

behavior of passive tracer particles advected in a

two-dimensional oceanic flow. Figure 10 shows the

evolution of attracting iLESs (blue), repelling iLESs

(red), and some passive tracers (cyan). These struc-

tures were initialized at t0 ¼ 0000 UTC 25 July 2019

(24 hours before the initial time given in Fig. 8) and

advected forward in time. The structures present in the

flow depend on the initial time t0. This different initial

time was chosen for illustrative purposes as it shows a

larger variety of structures present in the flow. Panel A

shows the iLESs and tracers at the initial time. Panels

B, C, and D show the iLESs and tracers after 12, 24,

and 48 h, respectively. In these panels, one can see that

Fig. 6 An attracting two-dimensional iLES surface, Sa, blue,

with a blob a passive tracers, green, shown from two different

viewing angles. Top row shows the iLES and tracers at the initial

time, t0 ¼ 0. Bottom row shows the iLES and tracers after being

advected forward in time to t ¼ 1:25. An animation for the

attracting iLES is at https://youtu.be/NWxdG7BY0_o

Fig. 7 A repelling two-dimensional iLES surface, Sr , red, with

a blob a passive tracers, green, from two different viewing

angles. Top row shows the iLES and tracers at the initial time,

t0 ¼ 0. Bottom row shows the iLES and tracers after being

advected forward in time to t ¼ 1:25. The animation for the

repelling iLES is at https://youtu.be/ZkD3qBnrHL0
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as time moves forward passive tracers are repelled

away from the repelling iLESs and attracted toward

the attracting iLESs, as is expected.

5.4 Two-dimensional atmospheric flow example

In this section, the methods described above are

applied to a realistic time-varying atmospheric flow

Fig. 8 Comparison of the

instantaneous attraction rate

a, with FTLE fields of

integration times T ¼, b �1

h, c �4 h, d �24 h. As the

integration time magnitude

increases, the average FTLE

values decreases, thus

comparing the exact values

of the heat-map is less

meaningful than comparing

the topography. For a

topographical analysis,

relatively high values are

shown in yellow and

relatively low values in dark

blue. A relative scale color

bar is shown on the right.

The spatial correlation

between these fields is

shown in Fig. 9

cba

Fig. 9 a Correlation coefficient between the attraction rate field
and the benchmark backward-time FTLE field as a function of

integration time, |T|, in hours. b RMSE for successive

approximations of the backward-time FTLE field for an oceanic

flow expanded in T: zeroth-order (blue), first-order (magenta),

and second-order (black). Time is in hours. The inset shows the

behavior for the higher-order terms for |T| close to 0. c Same as

(b), but on a log-log scale
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dc

baFig. 10 The iLESs and

passive tracers near the coast

of Louisiana at different

elapsed times, T ¼ t � t0. a
T ¼ 0 h, b T ¼ 12 h, c T ¼
24 h, d T ¼ 48 h. Repelling

iLESs are shown in red,

attracting iLES in blue, and

passive tracers in cyan

a
b

Fig. 11 a Pearson correlation coefficient between the attraction
rate field and the benchmark backward-time FTLE field as a

function of integration time, |T|, in hours. b RMSE for

successive approximations of the backward-time FTLE field

for an atmospheric flow expanded in T: zeroth-order (blue), first-

order (magenta), and second-order (black). Time is in seconds.

The inset shows the behavior for the higher-order terms for |T|

close to 0
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example, using wind data from a Weather Research

and Forecasting (WRF) model simulation over the

southeastern United States [89]. This model was run

with a horizontal grid resolution of 12 km and

temporal resolution of 1 h. Due to the scale mismatch

between the horizontal resolution and the vertical

resolution (which varies between 0.05 and 1 km), a

single vertical level was chosen to focus on for this

analysis. The level that was chosen corresponds to

approximately 100 m above ground level (AGL),

similar to what has been done in previous atmospheric

LCS studies [10, 15, 18, 90], as this is a level reachable

by unmanned aerial vehicles for in situ meteorological

measurements and sampling [49, 91]. The simulation

data is available for a 48 h interval I ¼ ½0000 UTC 30

June 2011, 0000 UTC 2 July 2011].

Using this data set the relationship between the

attraction rate, higher-order iLE approximations, and

the particle-integration-based backward-time FTLE

field for a two-dimensional atmospheric fluid flow can

be numerically verified. This can be seen in Fig. 11b,

which shows the RMSE of these approximations with

the FTLE field as integration is performed backward in

time from an initial time t0 in the interval I. The blue

line shows the RMSE for the attraction rate, the

magenta for the attraction rate with the correction term

to first-order in T, and the black for the attraction rate

with the correction term to second-order in T. As |T|

goes to 0, the RMSE of all three approximations also

goes to 0, thus numerically verifying the relationships

shown in Sect. 3 for a two-dimensional atmospheric

flow. This figure also shows that for small |T|, the

second-order approximation is the most accurate, as

expected. However, for larger |T| the attraction rate

will provide the most accurate approximation.

Figure 12 visually explores the connection between

the attraction rate and the FTLE field. Panel A shows

the attraction rate field at t0 ¼ 0000 UTC 1 July 2011.

Panels B, C, and D show the FTLE field for 1, 2, and 4

hours of backward-time integration. In these plots, it

Fig. 12 Comparison of the attraction rate (a), with FTLE fields

of integration times T ¼, b �1 h, c �2 h, d �4 h. As the

integration time increases, the average FTLE values decreases,

thus the comparing the values of the heat-map is less meaningful

than comparing the topography. For a topographical analysis,

relatively high FTLE values are show in yellow and relatively

low values in dark blue (a relative scale color bar is show on the

right). The spatial correlation between these fields is given in

Fig. 11. An animation of the comparison of the attraction rate

with the (backward-time) attracting FTLE field of integration

times up to 24 h in backward time, in 10 minute increments, can

be found at https://youtu.be/nkqpZ2GcO1E
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can be seen that the important Lagrangian transport

structures over the period examined are already

present in the attraction rate field, even though this

accuracy is not reflected in the RMSE plot, Fig. 11b.

As the field is integrated backward in time the

transport structures become sharper and grow longer,

but do not change significantly. For this particular

flow, as the integration time is increased the transport

patterns which are shown by the attraction rate field

become more sharply defined. This relationship can be

quantified by the Pearson correlation coefficient, given

in Fig. 11a, which shows that for short integration

times (\4 h), there is a strong correlation ([ 0:6)

between the attraction rate and backward-time FTLE

field. Then, as the integration time is increased the

correlation between the fields becomes weaker. How-

ever, note that even for jTj ¼ 24 hours, there is still a

moderate correlation ([ 0:4), not yet nearing zero.

An animation of the comparison of the attraction rate

with the (backward-time) attracting FTLE field of

integration times up to 24 h in backward time can be

found at https://youtu.be/nkqpZ2GcO1E.

This data set allows us to test whether iLESs are

effective at predicting the Lagrangian behavior of
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86 W 82 W 78 W
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Fig. 13 The iLESs and

passive tracers at different

elapsed times, t, since the

initial evaluation time, t0 ¼
0000 UTC 1 July 2011, of

the simulation. a t � t0 ¼ 0

h, b t � t0 ¼ 2 h, c t � t0 ¼
4 h, d t � t0 ¼ 8 h.

Repelling iLESs are shown

in red, attracting iLESs in

blue, and passive tracers in

cyan. An animation of the

evolution of the iLESs and

tracers over the entire 24 h

period can be found at

https://youtu.be/

h4UhJT8vsiU

Fig. 14 Comparison of the attraction rate field, s1, left, and the

repulsion rate field, s2, right, at T ¼ 0. Structures in the

attraction rate field are noticeably stronger than in the repulsion

rate field. The attraction rate field has been multiplied by �1 to

aid in visualization. The colorbar has units of hr�1
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passive tracer particles advected in a two-dimensional

atmospheric flow, even though they are only evaluated

at an initial time, t0 ¼ 0000 UTC 1 July 2011.

Figure 13 shows the evolution of attracting iLESs

(blue), repelling iLESs (red), and some example

passive tracers (cyan). These structures were initial-

ized at t0 and advected forward in time. Panel A shows

the iLESs and tracers at the initial time. Panels B, C,

and D show the iLESs and tracers after 2, 4, and 8 h,

respectively. An animation of the evolution of the

iLESs and tracers over the entire 24 h period can be

found at https://youtu.be/h4UhJT8vsiU. In these pan-

els it can be seen that as time marches forward passive

tracers are repelled away from the repelling iLESs and

attracted toward the attracting iLESs, as expected.

Interestingly, it can also be seen that some of the

repelling iLESs are attracted onto and effectively

consumed by the attracting iLESs. A partial explana-

tion for this can be found in Fig. 14, where a

comparison between the attraction rate and the

repulsion rate fields is shown. Note that the two-

dimensional vector field on this level is not diver-

gence-free, as the ignored vertical velocity is nonzero.

Thus, the two fields are different (recall they would be

the same if the vector field was divergence-free,

according to (22)). In this figure, it can be seen that the

attraction rate field is stronger than the repulsion rate

field is; that is, the most attractive points of the

attraction rate field are more than twice as attractive as

the most repelling points in the repulsion rate field are

repulsive. Thus, it can be concluded that while the

repelling iLESs are repulsive, the attracting iLESs are

more attractive and thus overpower the repelling

iLESs after a sufficient period of time. In similar

applications, OECSs have successfully predicted

short-term transport in several geophysical flows

[66, 67], including challenging flow scenarios as those

during search-and-rescue operations at sea [61].

5.5 Three-dimensional ABC flow

In this section, iLESs are applied to a fully coupled

three-dimensional flow. Additionally, the conver-

gence of the attraction rate and higher-order approx-

imation to the backward-time FTLE field is

demonstrated. For this section, the Arnold-Beltrami-

Childress (ABC) flow [92, 93] was chosen, a diver-

gence-free flow commonly used in FTLE and LCS

demonstrations. The fluid components of the ABC

flow are analytically given by,

_x ¼ u ¼ A sinðzÞ þ C cosðyÞ;
_y ¼ v ¼ B sinðxÞ þ A cosðzÞ;

_z ¼ w ¼ C sinðyÞ þ B cosðxÞ:

ð45Þ

The ABC flow v ¼ ðu; v;wÞ is an exact steady solution
to Euler’s fluid equations and has been shown to have

chaotic particle trajectories [93]. The domain for x ¼
ðx; y; zÞ is the periodic cube,

U ¼ ½0; 2p� � ½0; 2p� � ½0; 2p�. For coefficients,

A ¼
ffiffiffi
3

p
; B ¼

ffiffiffi
2

p
; C ¼ 1, were chosen following

[94].

As the ABC flow is an analytical flow, it is possible

to analytically express the repulsion and attraction rate

fields, as given in Appendix ‘‘Details for the

examples’’.

Figure 15 shows the RMSE of Eulerian approxi-

mations with the benchmark FTLE field (computed

using the algorithm of [73]) as the flow is integrated

backward in time from the initial time t0. Since this

flow is autonomous, t0 is arbitrary. The RMSE for the

attraction rate is shown in blue, the first-order

approximation in magenta, and the second-order

approximation in black. As in the previous sections,

this figure shows that as the integration time goes to

zero, the RMSE goes to zero as well.

Figure 16 examines the efficacy of iLESs for the

ABC flow. Figure 16 shows a repelling iLES (red),

along with two blobs of passive tracers (green).
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Fig. 15 RMSE for successive approximations of the backward-

time FTLE field for the ABC flow (45) expanded in T: zeroth-

order (blue), first-order (magenta). Time is in non-dimensional

units. The inset shows the behavior for the higher-order terms

for |T| close to 0
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In this figure, the first row shows the initial

configuration from two different angles, while the

second row shows the configuration after being

advected by the flow for a time of 1.3 non-dimensional

units. Due to the large amounts of twisting and shear in

the ABC flow, the repelling effects of iLES are more

difficult to visualize in this flow than in the examples

of sections 5.2 and 5.4. To compensate for this, two

blobs were used in Fig. 16. The green blobs are

initialized above and below a repelling iLES. In this

figure, one can see that as the iLES and tracers are

advected by the flow, the tracer blobs are transported

away from each other. This also demonstrates the

effectiveness of iLES as an indicator of flow separa-

trices, as tracers on opposite sides of the iLES do not

interact with one another.

6 Conclusions and future directions

Inspired by the recent variational theory of OECSs

[65] relating Eulerian quantities to short-term

Lagrangian transport, this paper provides a connection

between the smallest and largest eigenvalues of the

Eulerian rate-of-strain tensor and the backward-time

and forward-time FTLE fields in n dimensional sys-

tems. It was proven that these eigenvalues are the

limits of the backward-time and forward-time FTLE

fields, respectively, as the integration time, T, goes to

0. Additionally, it has shown that for small integration

times |T|, the eigenvectors of the right Cauchy-Green

strain tensor are equal to those of the rate-of-strain

tensor. These results provided a new Eulerian diag-

nostic, iLES, the instantaneous Lyapunov exponent

structure, which identifies the major hyperbolic fea-

tures dominating short-time particle deformation pat-

terns. Therefore, in the same way OECSs are related to

LCSs, iLES can be used in the place of FTLE ridges

when studying flows, and with considerable compu-

tational savings.

We explored our results on several analytical and

numerical data sets, demonstrating their efficacy in

revealing material transport structure. Given their

connection to the widely used FTLE-ridge-based

Fig. 16 A repelling two-

dimensional iLES surface,

red, within the three-

dimensional flow, with a

blob a passive tracers, green,

shown at different angles.

Top row shows the iLES and

tracers at the initial time,

t0 ¼ 0. Bottom row shows

the iLES and tracers after

being advected forward in

time to t ¼ 1:3
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hyperbolic LCS, the iLE and iLES approach could

have wide application.

Moreover, higher-order approximations of the

FTLE field using Rivlin-Ericksen tensors were derived

and explored. While this study expanded the right

Cauchy-Green deformation tensor and FTLE fields to

third order and second order in T, respectively, one

could follow this procedure to arbitrary order k,

assuming the underlying vector field is smooth enough

in the sense of differentiability. Automatic differen-

tiation techniques can be utilized, such as used for

invariant manifold estimation, where expansions up to

order k ¼ 35 or higher in the dependent variables have

been realized [95–97]. We note, however, that

approximations beyond linear order require more than

one time point to be computed from numerical data

sets. As a corollary, one could measure the effect of

unsteadiness, the t0 dependence, on the FTLE (and

corresponding Lagrangian transport structure) by

calculating the difference between a high-order FTLE

approximation and the true (particle advection based)

FTLE.

Future work on this topic will explore: the existence

of lower-dimensional iLESs embedded within higher-

dimensional iLESs [95, 98–102]; the application of

iLESs and higher-order FTLE approximations to

experimental data [49, 69]; the application of higher-

order FTLE approximations to reduced order models

(ROMs) [53]; measures of the influence of (temporal)

unsteadiness compared with (spatial) inhomogeneity

on Lagrangian transport structure; and the determina-

tion of the time interval over which Eulerian diagnos-

tics are most effective.
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Appendices

Expansion of the right Cauchy-Green tensor

in the integration time

For tensor fields in what follows, the dependence on x0
and t0 will be notationally dropped for clarity, as it will

be understood. For small integration time T ¼ t � t0,

the right Cauchy-Green tensor, C, may be expanded,

as in [65, 68, 77], in terms of the integration time T,

C ¼ CjT¼0 þ
dC

dT

����
T¼0

T þ 1

2!

d2C

dT2

����
T¼0

T2

þ 1

3!

d3C

dT3

����
T¼0

T3 þOðT4Þ:
ð46Þ

where the dependence on the initial position and time

is understood. Because all derivatives are evaluated at

T ¼ 0, d
dt

��
t¼t0

¼ d
dT

��
T¼0

. The first term on the right

denotes the situation of no deformation, therefore,

CjT¼0 ¼ 1. The derivatives of the right Cauchy-Green

tensor are given to any order by the Rivlin-Ericksen

tensors [68, 77, 103],

dC

dt
¼ r dx

dt
þ r dx

dt

� �>
;

dkC

dtk
¼ r dkx

dtk
þ r dkx

dtk

� �>

þ
Xk�1

i¼1

k

i

 !
r dix

dti

� �>

r dk�ix

dtk�i
;

ð47Þ

For small jTj � 1, the leading order behavior is given

by the first Rivlin-Ericksen tensor ðrvþ ðrvÞ>Þ,
which is twice S, from (7). The second-order term is,
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d2C

dt2
¼ r d2x

dt2
þ r d2x

dt2

� �>

þ2 r dx

dt

� �>
r dx

dt
;

¼ r dv

dt
þ r dv

dt

� �>
þ2 rvð Þ>rv;

¼ 2B

ð48Þ

where B is the same as given in (11).

The third-order term is,

d3C

dt3
¼ r d3x

dt3
þ r d3x

dt3

� �>

þ 3 r dx

dt

� �>
r d2x

dt2
þ r d2x

dt2

� �>

r dx

dt

" #
;

¼ r da

dt
þ r da

dt

� �>
þ3 rvð Þ>raþ rað Þ>rv
h i

;

¼ 3Q;

ð49Þ

where Q is the same as given in (13).

The expansion of the right Cauchy-Green tensor

(46) can be written as,

C ¼ 1þ 2TSþ T2Bþ 1

2
T3QþOðT4Þ;

¼ 1þ 2T Sþ 1

2
TBþ ð1

2
TÞ2QþOðT3Þ

� �
;

ð50Þ

which is a form convenient for matrix perturbation

analysis, as in Appendix ‘‘Eigenvalues of the Taylor-

expanded right Cauchy-Green tensor’’.

Details of approximating the FTLE to second-

order in integration time

Note the following general result for the eigenvalues,

k�ðAÞ ¼ k1ðAÞ� � � � � knðAÞ ¼ kþðAÞ; ð51Þ

of n� n real symmetric matrices A. Here, we use

k�ðAÞ and kþðAÞ as shorthand for kminðAÞ and

kmaxðAÞ, the minimum and maximum eigenvalues of

A, respectively. For scalar c 6¼ 0,

k	ð1þ cAÞ ¼ 1þ k	ðcAÞ; ð52Þ

where,

k	ðcAÞ ¼
ck	ðAÞ; for c[ 0;

ck�ðAÞ; for c\0:

�
ð53Þ

See Appendix ‘‘Proof of equation (52)’’ for the proof.

In (6), kn ¼ kþðCt
t0
ðxÞÞ. For small T [ 0, where the

OðT2Þ and higher terms can be neglected,

kþðCt
t0
ðxÞÞ ¼ 1þ 2TkþðSðx; t0ÞÞ þ OðT2Þ: ð54Þ

Thus,

logðknÞ ¼ logð1þ 2TkþðSðx; t0ÞÞÞ

¼ 2TkþðSðx; t0ÞÞ ¼ 2Tsnðx; t0Þ;
ð55Þ

in the limit of small T using the Taylor expansion,

logð1þ dÞ ¼ dþOðd2Þ for small jdj.
From (6), and noting that jTj ¼ T for T [ 0,

rtt0ðxÞ ¼
1

2jTj logðknÞ ¼
1

2T
2Tsnðx; t0Þ ¼ snðx; t0Þ

ð56Þ

Therefore, the maximum eigenvalue of Sðx; t0Þ is the
limit of the FTLE value for forward time as T ! 0þ.

For T\0 with small T,

kþðCt
t0
ðxÞÞ ¼ 1þ 2Tk�ðSðx; t0ÞÞ þ OðT2Þ: ð57Þ

Thus,

logðknÞ ¼ 2Tk�ðSðx; t0ÞÞ ¼ 2Ts1ðx; t0Þ; ð58Þ

in the limit of small T.

From (6), and noting that jTj ¼ �T for T\0,

rtt0ðxÞ ¼
1

2jTj logðknÞ ¼ � 1

2T
2Ts1ðx; t0Þ ¼ �s1ðx; t0Þ:

ð59Þ

Therefore, the negative of the minimum eigenvalue of

Sðx; t0Þ is the limit of the FTLE value for backward

time as T ! 0�.

Consider now the third term, the order T2 term, in

the expansion (10) of the right Cauchy-Green tensor.

Then, (54) becomes,

kþðCt
t0
ðxÞÞ ¼ 1þ 2Tkþ

�
Sðx; t0Þ þ 1

2
TBðx; t0Þ

�
þOðT3Þ:

ð60Þ

Note that Bðx; t0Þ, like Sðx; t0Þ, is symmetric.

Below, we adopt the notation of s� and sþ for s1 and

sn, respectively, as in the main text.
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It can be shown via matrix perturbation techniques

(see Appendix ‘‘Eigenvalues of the Taylor-expanded

right Cauchy-Green tensor’’) that,

kþ
�
Sðx; t0Þ þ 1

2
TBðx; t0Þ

�
¼ sþ þ 1

2
Te>þBeþ þ OðT2Þ:

ð61Þ

Using the Taylor expansion logð1þ dÞ ¼ d� 1
2
d2 þ

1
3
d3 þOðd4Þ for small jdj, by a similar argument as

before, for small T,

logðkþðCt
t0
ðxÞÞÞ ¼ log

�
1þ 2T

h
sþ þ 1

2
Te>þBeþ þ OðT2Þ

i�
;

¼ 2T
h
sþ þ 1

2
Te>þBeþ þ OðT2Þ

i
� 1

2
4T2s2þ þ OðT3Þ;

¼ 2T
h
sþ þ T

�
� s2þ þ 1

2
e>þBeþ

�
þOðT2Þ

i
:

ð62Þ

Therefore, for T [ 0 with small |T|,

rtt0ðxÞ ¼ sþðx; t0Þ

þ T
�
� sþðx; t0Þ2 þ 1

2
eþðx; t0Þ>Bðx; t0Þeþðx; t0Þ

�
þOðT2Þ:

ð63Þ

And similarly, for T\0 with small |T|,

rtt0ðxÞ ¼ �s�ðx; t0Þ

� T
�
� s�ðx; t0Þ2 þ 1

2
e�ðx; t0Þ>Bðx; t0Þe�ðx; t0Þ

�
þOðT2Þ:

ð64Þ

If we continue this procedure to obtain the approxi-

mate forward and backward FTLE through second

order in T, we get (14).

Proof of equation (52)

Let A be an n� n matrix, k an eigenvalue of A, n the

corresponding eigenvector of A, 1 the n� n identity

matrix and f 2 C. By the definition of an eigenvalue

An = kn, we have,

f 1þ Að Þn ¼ f nþ An ¼ f nþ kn ¼ fþ kð Þn:
ð65Þ

Therefore, if k is an eigenvalue of A with eigenvector

n, then ðfþ kÞ is an eigenvalue of f 1þ A with the

same eigenvector n. In particular, this holds when

f ¼ 1, as in (52).

Equality of the eigenvectors

of S and C as integration time goes to zero

Let T [ 0 be small enough that the relationships in

(10) and (54) hold and OðT2Þ terms are negligible. As

before, let ei be the eigenvector of S associated with si,

then,

S ei ¼ siei; ð66Þ

2TS ei þ ei ¼ 2Tsiei þ ei; ð67Þ

2TSþ 1ð Þei ¼ 2Tsi þ 1ð Þei; ð68Þ

C ei ¼ kiei; ð69Þ

where the dependence on x and t0 is understood and we

used the order-T approximation for C. But from (4)

and (5),

C nki ¼ kinki ð70Þ

thus,

ei ¼ nki ð71Þ

that is, if ei is an eigenvector of S, then it is also an

eigenvector ofC in the limit as T ! 0. Now, assuming

that nki is the eigenvector of C associated with ki, and
working through (66-69) in reverse proves that if nki is

an eigenvector of C, then it is also an eigenvector of S

in the limit as T goes to 0. For T\0 an analogous

argument holds using (57) in place of (54) and with the

ordering of the eigenvalues opposed, i.e.,

ki  sn�iþ1; i 2 f1; . . .; ng.
Therefore, in the limit as |T| goes to 0, the

eigenvectors of S and C are equal. For small |T|, we

can also use the perturbation expansion ofC, to get the

estimated eigenvectors of C from (73) in Appendix

‘‘Eigenvalues of the Taylor-expanded right Cauchy-

Green tensor’’, which provides the eigenvectors

through order T2 using only the velocity field v from

(1) evaluated at x and time t0 as well as appropriate

derivatives.
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Eigenvalues of the Taylor-expanded right Cauchy-

Green tensor

Let S be a real, symmetric n� nmatrix with n distinct

eigenvalues, and let B and Q also be real, symmetric

n� n matrices. We seek the eigenvalues of,

Se ¼ Sþ eBþ e2Q; ð72Þ

a perturbation of S, where jej is a small scalar. In our

case of interest, from (50), the small parameter is

e ¼ 1
2
T .

Consider the eigenvalue l0 of Swith corresponding

normalized eigenvector n0. Let’s refer to the perturbed

eigenvalue and corresponding perturbed eigenvector

of Se as le and ne. One can expand ne and le in powers
of e as

ne ¼ n0 þ en1 þ e2n2 þOðe3Þ; ð73Þ

le ¼ l0 þ el1 þ e2l2 þOðe3Þ: ð74Þ

The eigenvector equation, Sene ¼ lene, can be approx-
imated as

ðSþ eBþ e2QÞðn0 þ en1 þ e2n2Þ
¼ ðl0 þ el1 þ e2l2Þðn0 þ en1 þ e2n2Þ;

ð75Þ

which leads to the following three expressions,

corresponding to the order one terms, order e, and
order e2 terms, respectively,

Sn0 ¼ l0n0; ð76Þ

Sn1 þ Bn0 ¼ l0n1 þ l1n0; ð77Þ

Sn2 þ Bn1 þQn0 ¼ l0n2 þ l1n1 þ l2n0: ð78Þ

Multiply (77) by n>0 to get,

n>0 Sn1 þ n>0 Bn0 ¼ l0n
>
0 n1 þ l1n

>
0 n0; ð79Þ

Since n0 is normalized, n>0 n0 ¼ 1. Also, since S is

symmetric,

n>0 Sn1 ¼ ðn>1 Sn0Þ
>;

¼ ðn>1 l0n0Þ
>;

¼ l0n
>
0 n1;

ð80Þ

where (76) was used. Now (79) is,

l0n
>
0 n1 þ n>0 Bn0 ¼ l0n

>
0 n1 þ l1: ð81Þ

Thus,

l1 ¼ n>0 Bn0; ð82Þ

which, since B is symmetric, represents a quadratic

form.

A bound can be put on the term n>0 Bn0, noting that

n0 is a unit vector. If bn is the maximum eigenvalue of

B, then,

max
n0

n>0 Bn0 ¼ bn: ð83Þ

Similarly, if b1 is the minimum eigenvalue of B, then,

min
n0

n>0 Bn0 ¼ b1: ð84Þ

So,

l1 ¼ n>0 Bn0 2 ½b1; bn�: ð85Þ

So (74) becomes,

le ¼ l0 þ el1 þOðe2Þ; ð86Þ

where l1 is from (82).

With l1 in hand, n1 can also be determined as the

solution of the following re-arranged version of (77),

ðS� l01Þn1 ¼ �ðB� l11Þn0: ð87Þ

Note that ðS� l01Þ is not invertible as it has zero

determinant, since l0 is an eigenvalue of S. The null

space of ðS� l01Þ is spanfn0g. Note that (87) is of the
form Ax ¼ b with a square matrix A of nullity 1 and a

vector b which is in the image of A, as shown below.

Note that, as a consequence of (82), the vector Bn0
can be written as,

Bn0 ¼ l1n0 þ dn0?0 ; ð88Þ

where d 2 R and n0?0 is, in general, a vector in

imðS� l01Þ. This equation can be re-arranged to

yield,

�Bn0 þ l1n0 ¼ �dn0?0 : ð89Þ

The left-hand side of (89) is the same as the right-hand

side of (87), which means the right-hand side of (87) is

a vector b which is in imðS� l01Þ, which we will use
below.
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One can determine l2 by multiplying (78) by n>0 to

get, by a similar procedure as before,

l0n
>
0 n2 þ n>0 Bn1 þ n>0 Qn0 ¼ l0n

>
0 n2 þ l1n

>
0 n1 þ l2:

ð90Þ

Canceling the identical terms on both sides, we get,

l2 ¼ n>0 Qn0 þ n>0 Bn1 � l1n
>
0 n1: ð91Þ

But take the transpose and,

l2 ¼ n>0 Qn0 þ n>1 ðB� l11Þn0; ð92Þ

¼ n>0 Qn0 � n>1 ðS� l01Þn1; ð93Þ

where (87) was used. One can write n1 as,

n1 ¼ an0 þ bn?0 ; ð94Þ

where a; b 2 R and n?0 2 imðS� l01Þ, which is, in

general, not equal to n0?0 from (89). Hence,

l2 ¼ n>0 Qn0 � b2n?>
0 ðS� l01Þn?0 : ð95Þ

Therefore, the only part of n1 which contributes to l2
is the part which is in imðS� l01Þ.

When dealing with a two-dimensional flow field,

imðS� l01Þ is just a 1-dimensional subspace of R2,

and thus n0?0 in (89) is parallel to n?0 in (94). Without

loss of generality, they can be taken to be equal unit

vectors, n?0 ¼ n0?0 . Thus, (87) becomes,

bðS� l01Þn?0 ¼ �dn?0 ; ð96Þ

or, assuming b 6¼ 0,

ðS� l01Þn?0 ¼ �d

b
n?0 ; ð97Þ

which is an eigenvector equation for the matrix ðS�
l01Þ with the eigenvector n?0 and corresponding

eigenvalue �l ¼ �d
b
. Note that if b ¼ 0, then d ¼ 0

also, from (96).

For two-dimensional flows, from n0, one can easily

obtain n?0 from a 90
 counterclockwise rotation,

n?0 ¼ Rn0; ð98Þ

where,

R ¼
0 � 1

1 0

	 

: ð99Þ

Now, n?0 can be used to obtain �l from (97) for the case

d 6¼ 0. With (98) in (97), (97) becomes the following

eigenvector equation for R>ðS� l01ÞR with eigen-

vector n0,

R>ðS� l01ÞRn0 ¼ �ln0; ð100Þ

Therefore �l is obtained by taking the dot product with

n0,

�l ¼ n>0 R
>ðS� l01ÞRn0; ð101Þ

and d is obtained from (89), noting that n?>
0 n0 ¼ 0,

d ¼ n?>
0 Bn0;

¼ n>0 R
>Bn0:

ð102Þ

Thus, (95), for two-dimensional systems, simplifies to,

l2 ¼
n>0 Qn0; if d ¼ 0

n>0 Qn0 � d2

�l ; if d 6¼ 0

(
ð103Þ

where �l and d are from (101) and (102), respectively.

Details for the examples

Details for nonlinear saddle example

Writing the log term of (35) as follows, using Taylor

series approximations for small |T|, we have,
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logðe4TÞ � log½ð1� y20Þe2T þ y20Þ
3�;

¼ 4T � 3 log½ð1� y20Þð1þ 2T þ 1

2!
ð2TÞ2

þ 1

3!
ð2TÞ3 þOðT4ÞÞ þ y20�;

¼ 4T � 3 log½1þ ð1� y20Þ2T þ ð1� y20Þ2T2

þ ð1� y20Þ
4

3
T3 þOðT4Þ�;

¼ 4T � 3½ð1� y20Þ2T þ y20ð1� y20Þ2T2

� y20ð1� y20Þð1� 2y20Þ
4

3
T3 þOðT4Þ�;

¼ 4T � ð1� y20Þ6T � y20ð1� y20Þ6T2

þ 4T3y20ð1� y20Þð1� 2y20Þ þ OðT4Þ;

¼ �2T ½ð1� 3y20Þ þ 3y20ð1� y20ÞT

� 2y20ð1� y20Þð1� 2y20ÞT2 þOðT3Þ�:
ð104Þ

So the backward FTLE is expanded in T as follows,

obtained by dividing by �2T ,

rT0 ðx0Þ ¼ ð1� 3y20Þ þ 3y20ð1� y20ÞT
� 2y20ð1� y20Þð1� 2y20ÞT2 þOðT3Þ:

ð105Þ

which is the same as (36).

The FTLE can be approximated by the first, second,

and third terms (the zeroth-order, first-order, and

second-order in T, respectively) using the procedure

outlined in Sect. 3. The gradient of the velocity is,

rvðx0Þ ¼
1 0

0 ð�1þ 3y20Þ

	 

; ð106Þ

which is also Sðx0Þ, since the gradient is diagonal. This
has a minimum eigenvalue s� ¼ �1þ 3y20, the neg-

ative of which matches the first term of (105), as

prescribed by (14). To calculate the second term of

(105), the term first-order in T, the acceleration field

needs to be calculated and then Bðx0Þ. The acceler-

ation field is, following (12),

€x ¼ d

dt
_x ¼ x;

€y ¼ d

dt
_y ¼ y� 4y3 þ 3y5:

ð107Þ

Therefore (11) gives,

Bðx0Þ ¼
1 0

0 ð1� 12y20 þ 15y40Þ

" #

þ
1 0

0 ð1� 6y20 þ 9y40Þ

" #
;

¼
2 0

0 ð2� 18y20 þ 24y40Þ

" #
:

ð108Þ

The normalized eigenvector of Sðx0Þ corresponding to
s� is simply e� ¼ ½0; 1�>, which, via (16), yields,

l1� ¼ e>�Bðx0Þe� ¼ 0 1½ �
2 0

0 ð2� 18y20 þ 24y40Þ

" #
0

1

" #
;

¼ 2� 18y20 þ 24y40;

ð109Þ

hence,

�s2� þ 1

2
l1� ¼ �ð1� 6y20 þ 9y40Þ þ 1� 9y20 þ 12y40;

¼ �3y20ð1� y20Þ;
ð110Þ

the negative of which matches the T coefficient of the

second term of (105), as prescribed by (14).

For the term second-order in T, note that, as

prescribed by (13),

Qðx0Þ ¼
2

3

1 0

0 ð�1þ 39y20 � 135y40 þ 105y60Þ

" #

þ 2
1 0

0 ð1� 12y20 þ 15y40Þ

" #
1 0

0 ð�1þ 3y20Þ

" #
;

¼
2
3

0

0 ð�2
3
þ 26y20 � 90y40 þ 70y60Þ

" #

þ
2 0

0 ð�2þ 30y20 � 102y40 þ 90y60Þ

" #
;

¼
8
3

0

0 ð�8
3
þ 56y20 � 192y40 þ 160y60Þ

" #
;

ð111Þ

and since (87) implies that n1� is parallel to e�, (16)
yields,

l2� ¼ e>�Qðx0Þe� ¼ �8

3
þ 56y20 � 192y40 þ 160y60:

ð112Þ

According to (14), the second-order term is,
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�T2½�4

3
ð1� 3y20Þð1� 6y20 þ 9y40Þ

þ ð1� 3y20Þð2� 18y20 þ 24y40Þ

þ 1

4
ð�8

3
þ 56y20 � 192y40 þ 160y60Þ�

¼ �T2½ð�4

3
þ 8y20 � 12y40 þ 4y20 � 24y40 þ 36y60Þ

þ ð2� 18y20 þ 24y40 � 6y20 þ 54y40 � 72y60Þ

þ ð�2

3
þ 14y20 � 48y40 þ 40y60Þ�;

¼ �T2½ð�4

3
þ 12y20 � 36y40 þ 36y60Þ

þ ð2� 24y20 þ 78y40 � 72y60Þ

þ ð�2

3
þ 14y20 � 48y40 þ 40y60Þ�;

¼ �T2½2y20 � 6y40 þ 4y60�;

¼ �T2y20ð1� y20Þð1� 2y20Þ
ð113Þ

which matches the T2 term of the true FTLE field

(105).

Details for the time-varying double-gyre example

The gradient tensor for the double-gyre velocity field

(40) is,

rv ¼

ou

ox

ou

oy

ov

ox

ov

oy

2
6664

3
7775;

¼
�p2A cosðpf Þ cosðpyÞ of

ox
p2A sinðpf Þ sinðpyÞ

�p2A sinðpf Þ sinðpyÞ of
ox

þ pA cosðpf Þ sinðpyÞ o
2f

ox2
p2A cosðpf Þ cosðpyÞ of

ox

2
664

3
775:

ð114Þ

The acceleration field, a ¼ d
dt
v ¼ ðax; ayÞ, for the

double-gyre, (40), is given by,

ax ¼� p2A cosðpf Þ cosðpyÞof
ot
þ 1

2
p3A2 sinð2pf Þof

ox
;

ay ¼p2A
h
� sinðpf Þ sinðpyÞof

ox

of

ot
þ 1

p
cosðpf Þ sinðpyÞ o

2f

oxot

i

þ1

2
p3A2 sinð2pyÞ

h
sin2ðpf Þof

ox
þ cos2ðpf Þðof

ox
Þ2 � 1

2p
sinð2pf Þo

2f

ox2

i
;

ð115Þ

where the dependence of the function f, from (39), is

understood.

The components of the symmetric B matrix are,

Bxx ¼ �Ap2 cosðpf Þ cosðpyÞ o
2f

oxot
þ 1

2
Ap3 sinð2pf Þof

ox

of

ot

þ A2p3 sinð2pf Þo
2f

ox2

�
1

2
� sin2ðpyÞðof

ox
Þ2
�

þ A2p4 cosð2pf Þðof
ox
Þ2

þ A2p4 sin2ðpf Þ sin2ðpyÞðof
ox
Þ4

þ A2p2 cos2ðpf Þ sin2ðpyÞo
2f

ox2

þ A2p4 cos2ðpf Þ cos2ðpyÞðof
ox
Þ2;

ð116Þ

Bxy ¼ 1

2
Ap cosðpf Þ sinðpyÞ

h
o3f

ox2ot
þ p2

�
1� ðof

ox
Þ2
�i

� Ap2 sinðpf Þ sinðpyÞ
�
of

ox

o2f

oxot
� 1

2

o2f

ox2
of

ot

�

� 1

4
A2p4 sinð2pf Þ sinð2pyÞ

h
of

ox

�
1þ ðof

ox
Þ2
�
þ 1

2

o3f

ox3

i
;

ð117Þ

Byy ¼ Ap2 cosðpf Þ cosðpyÞ o
2f

oxot
� Ap3 sinðpf Þ cosðpyÞof

ox

of

ot

� 1

2
A2p3 sinð2pf Þ sinð2pyÞo

2f

ox2

þ A2p4 cos2ðpf Þ cos2ðpyÞðof
ox
Þ2 þ A2p4 sin2ðpf Þ sin2ðpyÞ

þ A2p4ðof
ox
Þ2
�
cos2ðpf Þ � sin2ðpyÞ

�
:

ð118Þ

The eigenvalue s�ðx0; t0Þ of Sðx0; t0Þ is,

s� ¼ � 1

2
p2A

"�
sinðpf Þ sinðpy0Þ

�
1� of

ox

�

þ 1

p
cosðpf Þ sinðpy0Þ

o2f

ox2

�2

þ 4
�
cosðpf Þ cosðpy0Þ

of

ox

�2#1=2
:

ð119Þ

The normalized eigenvector of Sðx0; t0Þ corresponding
to the eigenvalue s�ðx0; t0Þ is given by,

e� ¼
ex

ey

	 

¼ 1

N

�s� � b
1
2
a

	 

; ð120Þ

where,
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�s� ¼ s�
p2A

¼ �1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b2

q
;

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
a2 þ ð�s1 � bÞ2

r
;

a ¼ sinðpf Þ sinðpyÞ
�
1� of

ox

�
þ 1

p
cosðpf Þ sinðpyÞo

2f

ox2
;

b ¼ cosðpf Þ cosðpyÞof
ox
:

ð121Þ

The coefficient of T in the approximation of the

backward-time FTLE for the double-gyre is thus given

by s2� � 1
2
e>�Be� which can be expressed in terms of,

a�ðx0; t0Þ ¼ �s2� þ 1

2
ðBxxe

2
x þ 2Bxyexey þ Byye

2
yÞ;

ð122Þ

using the above formulas. This yields a backward-time

FTLE approximation for small backward times T\0

of,

rt0þT
t0

ðx0Þ ¼ s�ðx0; t0Þ � a�ðx0; t0ÞT þOðT2Þ:
ð123Þ

Note that the first and second terms have explicit

dependence on both initial position and initial time.

Details for the ABC flow example

For the ABC velocity field (45), the characteristic

polynomial for the rate-of-strain tensor S for this

system is,

s3 þ a1sþ a0 ¼ 0; ð124Þ

where

a0 ¼ �1

4
ðB cosðxÞ � C sinðyÞÞðC cosðyÞ

� A sinðzÞÞð�B sinðxÞ þ A cosðzÞÞ;

a1 ¼ �1

4

h
ðB cosðxÞ � C sinðyÞÞ2

þ ðC cosðyÞ � A sinðzÞÞ2

þ ð�B sinðxÞ þ A cosðzÞÞ2
i

ð125Þ

The repulsion and attraction rate fields, sþ and s�, are
given by

sþ ¼ 2q1=3 cos
�h
3

�
[ 0;

s� ¼ �1

2
sþ �

ffiffiffi
3

p
q1=3 sin

�h
3

�
\0;

ð126Þ

where the dependence on initial position x is under-

stood and q and h are given by,

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ jpj

p
;

h ¼ tan�1
�
Imð ffiffiffi

p
p Þ
q

�
;

ð127Þ

where,

q ¼ �1

2
a0;

p ¼ 1

27
a31 þ

1

4
a20:

ð128Þ
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